首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of photoluminescent (light-correcting) polymeric films on the enzymatic activity of microorganisms in oil-polluted soil was investigated under laboratory conditions. The efficiency of the use of films as a covering material containing organic and inorganic photoluminophores was studied under the UV-irradi-ation of the soil polluted with oil products in a concentration of up to 50 g/kg. The application of light-correcting films increases the activity of enzymes in oil-polluted soil: catalase by a factor of 2–4, dehydrogenase 2.5, urease 4.5, polyphenoloxidase and peroxidase by a factor of 2–3. In this situation, as chromatographic investigations showed, biodegradation of oil hydrocarbons polluting the soil proceeds 5–6 times faster in comparison with the reference versions for which a usual polymeric high-pressure polyethylene film was used.  相似文献   

2.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C15–C27) and polycyclic aromatic hydrocarbons (C0- to C2- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75–98% for higher molecular-weight alkanes (C28–C40) and to 55–80% for the C3 derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C3-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.  相似文献   

3.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

4.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

5.
The essential oil obtained by hydrodistillation from the leaves of micropropagated plants of Artemisia amygdalina was analyzed by capillary GC–FID and GC–MS and compared with that obtained from the leaves of field growing parent plants. The oil yield from the micropropagated plants was lower (0.05% v/w) than the oil yield obtained from field-grown plants (0.2% v/w). The major constituents of the field-grown plants were p-cymene (21.0%), 1,8-cineole (24.9%), α-terpineol (5.9%), β-caryophyllene (4.7%), germacrene D (4.0%), while as the major constituents from the micropropagated plants were p-cymene (11.3%),1,8-cineole (10.2%), borneol (7.9%), α-longipinene (5.5%), α-copaene (5.5%) and β-caryophyllene (17%). The essential oil from field-grown plant was dominated by the presence of oxygenated monoterpenes (41.5%), monoterpene hydrocarbons (35.9%) and sesquiterpene hydrocarbons (16.3%) while as the essential oil of micropropagated plants was characterized by sesquiterpene hydrocarbons (40.0%), oxygenated monoterpenes (25.2%) and monoterpene hydrocarbons (21.6%).  相似文献   

6.
Enhanced nitrogen (N) levels accelerate expansion of Calamagrostis epigejos and Arrhenatherum elatius, highly aggressive expanders displacing original dry acidophilous grassland vegetation in the Podyjí National Park (Czech Republic). We compared the capability of Calamagrostis and Arrhenatherum under control and N enhanced treatments to (i) accumulate N and phosphorus (P) in plant tissues, (ii) remove N and P from above-ground biomass during senescence and (iii) release N and P from plant material during decomposition of fresh formed litter. In control treatment, significantly higher amounts of total biomass and fresh aboveground litter were observed in Calamagrostis than in Arrhenatherum. Contrariwise, nutrient concentrations were significantly higher (11.6–14.3 mg N g−1 and 2.3 mg P g−1) in Arrhenatherum peak aboveground biomass than in Calamagrostis (8.4–10.3 mg N g−1 and 1.6–1.7 mg P g−1). Substantial differences between species were found in resorption of nutrients, mainly P, at the ends of growing seasons. While P concentrations in Arrhenatherum fresh litter were twice and three times higher (1.6–2.5 mg P g−1) than in Calamagrostis (0.7–0.8 mg P g−1), N concentrations were nearly doubled in Arrhenatherum (13.1–15.6 mg N g−1) in comparison with Calamagrostis (7.4–8.7 mg N g−1). Thus, the nutrients (N and mainly P) were retranslocated from the aboveground biomass of Calamagrostis probably more effectively in comparison with Arrhenatherum at the end of the growing season. On the other hand, Arrhenatherum litter was decomposed faster and consequently nutrient release (mainly N and P) was higher in comparison with Calamagrostis which pointed to different growth and nutrient use strategies of studied grass species.  相似文献   

7.
Nitroexplosives are essential for security and defense of the nation and hence their production continues. Their residues and transformed products, released in the environment are toxic to both terrestrial and aquatic life. This necessitates remediation of wastewaters containing such hazardous chemicals to reduce threat to human health and environment. Bioremediation technologies using microorganisms become the present day choice. High Melting Explosive (HMX) is one of the nitroexplosives produced by nitration of hexamine using ammonium nitrate and acetic anhydride and hence the wastewater bears high concentration of nitrate and acetate. The present investigation describes potential of a soil isolate of yeast Pichia sydowiorum MCM Y-3, for remediation of HMX wastewater in fixed film bioreactor (FFBR). The flask culture studies showed appreciable growth of the organism in HMX wastewater under shake culture condition within 5–6 days of incubation at ambient temperature (28 ± 2°C). The FFBR process operated in both batch and continuous mode, with Hydraulic Retention Time (HRT) of 1 week resulted in 50–55% removal in nitrate, 70–88% in acetate, 50–66% in COD, and 28–50% in HMX content. Continuous operation of the reactor showed better removal of nitrate as compared to that in the batch operation, while removal of acetate and COD was comparable in both the modes of operation of the reactor. Insertion of baffles in the reactor increased efficiency of the reactor. Thus, FFBR developed with baffles and operated in continuous mode will be beneficial for bioremediation of high nitrate and acetate containing wastewater using the culture of P. sydowiorum.  相似文献   

8.
Paraulopus brevirostris, P. filamentosus, P. japonicus, P. legandi, P. maculatus, and P. oblongus are redescribed. All species are included in the Paraulopus oblongus group, characterized by having no supraocular ridge, 2.5–3.5 scales above the lateral line, and small adult body size (70–150 mm SL). In addition, P. atripes, from the Indian Ocean, is described as a new species of the P. oblongus group, being defined by the following combination of characters: small antrorse dentary process on chin; eye directed laterally; pelvic fin black in males; caudal fin white; 32–34 gill rakers; 45–46 pored lateral-line scales; and 3.5 scales below lateral line. Paraulopus albimaculatus is regarded as a junior synonym of P. brevirostris, based on examination of type specimens. A key to species in the P. oblongus group is included. Received: September 2, 2002 / Revised: January 31, 2003 / Accepted: February 17, 2003  相似文献   

9.
We investigated interspecific variation in leaf lifespan (persistence) and consequent differences in leaf biochemistry, anatomy, morphology, patterns of whole-tree carbon allocation and stand productivity. We tested the hypothesis that a species with short-lived foliage, Pinus radiata D. Don (mean leaf lifespan 2.5 years), grows faster than P. pinaster Ait., a species with more persistent foliage (leaf lifespan 5.6 years), and that the faster growth rate of P. radiata is associated with a greater allocation of nitrogen and carbon to photosynthetic tissues across a range of scales. In fully sunlit foliage, the proportion of leaf N in the major photosynthetic enzyme Rubisco (ribulose-1, 5-bisphosphate carboxylase) was greater in P. radiata than in P. pinaster, and, in mid-canopy foliage, the proportion of leaf N in thylakoid proteins was greater in P. radiata. A lesser proportion of needle cross-sectional area was occupied by structural tissue in P. radiata compared to P. pinaster. Foliage mass in stands of P. radiata was 9.7 t ha–1 compared with 18.2 t ha–1 in P. pinaster while leaf area index of both species was similar at 4.6 m2 m–2, owing to the compensating effect of differences in specific leaf area. Hence trade-offs between persistence and productivity were apparent as interspecific differences in patterns of whole-tree carbon allocation, needle morphology, anatomy and biochemistry. However, these interspecific differences did not translate into differences at the stand scale since rates of biomass accumulation were similar in both species (P. radiata 6.9±0.9 kg year–1 tree–1; P. pinaster 7.4±0.9 kg year–1 tree–1). The similarities in performance at larger scales suggest that leaf area index (and radiation interception) determines growth and productivity. Received: 13 July 1999 / Accepted: 31 January 2000  相似文献   

10.
High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8–9 and 25–40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200–4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH.  相似文献   

11.
Knowledge of plant–weather relationships can improve crop management, resulting in higher quality and more stable crop yields. The annual timing of spring phenophases in mid-latitudes is largely a response to temperature, and reflects the thermal conditions of previous months. The effect of air temperature on the variability of hazelnut (Corylus avellana L.) phenophases (leafing, flowering) was investigated. Meteorological and phenological data for five cultivars were analysed over the periods 1969–1979 (P1) and 1994–2007 (P2) in Maribor, Slovenia. Phenological data series were correlated strongly to the temperature of the preceding months (R 2: 0.64–0.98) and better correlated to daily maximum and mean temperatures than to daily minimum temperatures. About 75% of phenophases displayed a tendency towards earlier appearance and a shorter flowering duration during P2, which could be explained by the significant temperature changes (+0.3°C/decade) from December to April between 1969 and 2007. An increase in air temperature of 1°C caused an acceleration in leafing by 2.5–3.9 days, with flowering showing higher sensitivity since a 1°C increase promoted male flowering by 7.0–8.8 days and female flowering by 6.3–8.9 days. The average rate of phenological change per degree of warming (days earlier per +1°C) did not differ significantly between P1 and P2. An estimation of chilling accumulation under field conditions during 1993–2009, between 1 November and 28 February, showed that all four of these months contributed approximately similar amounts of accumulated chilling units. The growing degree days (GDD) to flowering were calculated by an estimated base temperature of 2°C and 1 January as a starting date, given the most accurate calculations. In general, thermal requirements were greater in P2 than in P1, although this difference was not significant. Longer-time series data extended to other agricultural and wild plants would be helpful in tracking possible future changes in phenological responses to local climate.  相似文献   

12.
This research investigated the effect of microwave irradiation (MWI) on cell disintegration in municipal secondary sludge (MSS). A representative MSS Gram-positive bacterium (Bacillus subtilis) and Gram-negative bacteria (Acinetobacter calcoaceticus and Pseudomonas aeruginosa) were pure cultured separately and treated using MWI. Compared to untreated controls, MWI significantly increased the soluble chemical oxygen demand (COD) (1.8–4.0-fold), soluble protein concentration (1.1–1.8-fold), and soluble carbohydrate concentration (3.2–14.1-fold), with greater increase in the Gram-negative bacteria. After MSS was MWI-treated with different irradiation times, from 0 to 9 min, soluble COD increased gradually from 0.14 to 2.38 g/L (i.e., 72-fold). Effective disintegration of Gram-negative cell walls and of MSS by MWI was confirmed by scanning electron microscopy. These findings suggest that MWI could be an effective pretreatment method for MSS that is dominated by Gram-negative microorganisms.  相似文献   

13.
A Bacillus sp. strain DHT, isolated from oil-contaminated soil, grew and produced biosurfactant when cultured in variety of substrate at salinities of up to 100 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, various pure alkanes and PAHs as a sole carbon and energy source across a wide range of temperature and salinity. Over the range evaluated, the degradation of hydrocarbon and biosurfactant production was not influenced by salinity (0–10% wv−1) and temperature (30–45°C). The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as the best substrate and toluene as the poorest. From 16S rDNA analysis, strain DHT was related to Bacillus licheniformis.  相似文献   

14.
In this study, the production of enantiomerically pure (1R,4S,6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one ((−)-2) through stereoselective bioreduction was used as a model reaction for the comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli as biocatalysts. For both microorganisms, over-expression of the gene encoding the NADPH-dependent aldo-keto reductase YPR1 resulted in high purity of the keto alcohol (−)-2 (>99% ee, 97–98% de). E. coli had three times higher initial reduction rate but S. cerevisiae continued the reduction reaction for a longer time period, thus reaching a higher conversion of the substrate (95%). S. cerevisiae was also more robust than E. coli, as demonstrated by higher viability during bioreduction. It was also investigated whether the NADPH regeneration rate was sufficient to supply the over-expressed reductase with NADPH. Five strains of each microorganism with varied carbon flux through the NADPH regenerating pentose phosphate pathway were genetically constructed and compared. S. cerevisiae required an increased NADPH regeneration rate to supply YPR1 with co-enzyme while the native NADPH regeneration rate was sufficient for E. coli. Nádia Skorupa Parachin and Magnus Carlquist have contributed equally to the paper.  相似文献   

15.
Estuaries are often considered sinks for contaminants and the cleanup of salt marshes, sensitive ecosystems with a major ecological role, should be carried out by means of least intrusive approaches, such as bioremediation. This study was designed to evaluate the influence of plant–microorganisms associations on petroleum hydrocarbons fate in salt marshes of a temperate estuary (Lima River, NW Portugal). Sediments un-colonized and colonized (rhizosediments) by different plants (Juncus maritimus, Phragmites australis, Triglochin striata and Spartina patens) were sampled in four sites of the lower and middle estuary for hydrocarbon degrading microorganisms (HD), total cell counts (TCC) and total petroleum hydrocarbons (TPHs) assessment. In general, TPHs, HD and TCC were significantly higher (P < 0.05) in rhizosediments than in un-colonized sediments. Also recorded were differences on the abundance of hydrocarbon degraders among the rhizosediment of the different plants collected at the same site (J. maritimus < P. australis < T. striata), with statistically significant differences (P < 0.05) between J. maritimus and T. striata. Moreover, strong positive correlations—0.81 and 0.84 (P < 0.05), between biotic (HD) and abiotic (organic matter content) parameters and TPHs concentrations were also found. Our data clearly suggest that salt marsh plants can influence the microbial community, by fostering the development of hydrocarbon-degrading microbial populations in its rhizosphere, an effect observed for all plants. This effect, combined with the plant capability to retain hydrocarbons around the roots, points out that salt marsh plant–microorganisms associations may actively contribute to hydrocarbon removal and degradation in estuarine environments.  相似文献   

16.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

17.
A quantitative solid-phase microextraction, gas chromatography, flame ionization detector (SPME-GC-FID) method for low-molecular-weight hydrocarbons from crude oil was developed and applied to live biodegradation samples. Repeated sampling was achieved through headspace extractions at 30°C for 45 min from flasks sealed with Teflon Mininert. Quantification without detailed knowledge of oil–water–air partition coefficients required the preparation of standard curves. An inverse relationship between retention time and mass accumulated on the SPME fibre was noted. Hydrocarbons from C5 to C16 were dated and those up to C11 were quantified. Total volatiles were quantified using six calibration curves. Biodegradation of volatile hydrocarbons during growth on crude oil was faster and more complete with a mixed culture than pure isolates derived therefrom. The mixed culture degraded 55% of the compounds by weight in 4 days versus 30–35% by pure cultures of Pseudomonas aeruginosa, Rhodococcus globerulus or a co-culture of the two. The initial degradation rate was threefold higher for the mixed culture, reaching 45% degradation after 48 h. For the mixed culture, the degradation rate of individual alkanes was proportional to the initial concentration, decreasing from hexane to undecane. P. fluorescens was unable to degrade any of the low-molecular-weight hydrocarbons and methylcyclohexane was recalcitrant in all cases. Overall, the method was found to be reliable and cost-effective. Journal of Industrial Microbiology & Biotechnology (2000) 25, 155–162. Received 04 March 2000/ Accepted in revised form 25 June 2000  相似文献   

18.
A bacterium, CP1, identified as Pseudomonas putida strain, was investigated for its ability to grow on and degrade mono-chlorophenols and phenols as sole carbon sources in aerobic shaking batch culture. The organism degraded up to 1.56 mM 2- and 3-chlorophenol, 2.34 mM 4-chlorophenol and 8.5 mM phenol using an ortho-cleavage pathway. P. putida CP1, acclimated to degrade 2-chlorophenol, was capable of 3-chlorocatechol degradation, while P. putida, acclimated to 4-chlorophenol degradation, degraded 4-chlorocatechol. Growth of P. putida CP1 on higher concentrations of the mono-chlorophenols, ≥1.56 mM 4-chlorophenol and ≥0.78 mM 2- and 3-chlorophenol, resulted in decreases in cell biomass despite metabolism of the substrates, and the formation of large aggregates of cells in the culture medium. Increases in cell biomass with no clumping of the cells resulted from growth of P. putida CP1 on phenol or on lower concentrations of mono-chlorophenol. Bacterial adherence to hydrocarbons (BATH) assays showed cells grown on the higher concentrations of mono-chlorophenol to be more hydrophobic than those grown on phenol and lower concentrations of mono-chlorophenol. The results suggested that increased hydrophobicity and autoaggregation of P. putida CP1 were a response to toxicity of the added substrates. Journal of Industrial Microbiology & Biotechnology (2002) 28, 316–324 DOI: 10.1038/sj/jim/7000249 Received 27 June 2001/ Accepted in revised form 09 February 2002  相似文献   

19.
Summary An efficient and rapid micropropagation system was developed for a food and medicinally important endangered shrub, Decalepis hamiltonii (‘swallow root’), through shoot multiplication. The influence of 2.5–7.5 μM isopentenyladenine (2iP), 4.4–17.7 μM 6-benzyladenine, 2.3–4.7 μM kinetin, 2.8–6.8 μM thidiazuron, and 2.3–11.4 μM zeatin alone and in combination with 0.3–0.9 μM indole-3-acetic acid (IAA) on in vitro multiple shoot production was studied. The maximum number of multiple shoots (6.5±0.4) was induced from shoot tips cultured on agar-based Murashige and Skoog (MS) medium containing 4.9 μM 2iP. But, both zeatin (9.1 μM) and kinetin (4.7 μM) in combination with IAA (0.6 μM) were able to produce a maximum of 5.0±0.4 and 5.1±0.4 multiple shoots, respectively. Further elongation of shoots and adventitious shoot formation was obtained on medium containing 2.5 μM 2iP and 0.3 μM gibberellic acid. Elongated shoots were separated and rooted on MS medium supplemented with 9.8μM indole-3-butyric acid (IBA) and various phenolic compounds within 5–6 wk. Phloroglucinol and salicylic acid interaction with IBA stimulated in vitro rooting of shoots. Successful field transfer was achieved in rooted plantlets.  相似文献   

20.
Plants belonging to the genus Panax produce ginsenosides that possess pharmacological properties. The ability to synthesize these compounds is preserved in some cultured cells of ginseng. In this work, we used suspension cell cultures of two species of ginseng: Panax japonicus var. repens C. A. Mey and P. ginseng C. A. Mey. The first culture was grown on MS medium supplemented with α-NAA. After one subculturing, cell biomass increased 5–6 times with the level of ginsenosides being equal to 2.5–3.0% of dry weight. The second culture was grown on the same medium supplemented with 2,4-D. In this case, biomass increment was 3–5-fold, and ginsenosides were produced in trace amounts. Substitution of 2,4-D for NAA in suspension cell culture of P. japonicus brought about deterioration of growth characteristics, but the content and composition of ginsenosides was not changed. In the suspension cell culture of P. ginseng, substitution of NAA for 2,4-D decreased the rate of biomass accumulation and increased the extent of cell aggregation, with total content of ginsenosides increasing 25 times and their assortment being complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号