首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity.  相似文献   

2.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

3.
Fragmentation reduces habitat area, increases the number of habitat patches, decreases their size, and increases patch isolation. For arboreal mammals such as howlers (Alouatta palliata), canopy modifications from fragmentation processes could also negatively affect habitat quality. We analyzed changes in the composition and plant structure of 15 fragments (1–76 ha) and compared them with vegetation from a continuous tropical rain forest reserve (700 ha) in Los Tuxtlas, Mexico. At each site, we sampled 1000 m2 of all trees, shrubs, and lianas with a diameter at breast height (DBH) ≥10 cm. We obtained estimates of species richness, density, and basal area for different ecological groups, DBH ranges, and top food resources for howlers. We used a stepwise multiple regression analysis to determine relationships between fragment characteristics (size, shape index, and isolation) and plant variables. Compared to continuous forest, fragments have altered composition and plant structure, with large trees absent from the canopy. The basal area of top food resources is higher in continuous forest. Fragment size is the best explanation for the differences in composition and plant structure. The largest fragments had greater basal area of top food resources and more large primary trees in the canopy. Overall, our results suggest that fragmentation altered the habitat quality for howlers.  相似文献   

4.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

5.
This study describes diversity patterns in the flora of the Campo-Ma’an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, to the submontane forest at higher elevations and the mixed evergreen and semi-deciduous forest in the drier Ma’an area. We tested whether there is a correlation between tree species diversity and diversity of other growth forms such as shrubs, herbs, and lianas in order to understand if, in the context of African tropical rain forest, tree species diversity mirrors the diversity of other life forms or strata. Are forests that are rich in tree species also rich in other life forms? To answer this question, we analysed the family and species level floristic richness and diversity of the various growth forms and forest strata within 145 plots recorded in 6 main vegetation types. A comparison of the diversity within forest layers and within growth forms was done using General Linear Models. The results showed that tree species accounted for 46% of the total number of vascular plant species with DBH ≥1 cm, shrubs/small trees 39%, climbers 14% and herbs less than 1%. Only 22% of the diversity of shrubs and lianas could be explained by the diversity of large and medium sized trees, and less than 1% of herb diversity was explained by tree diversity. The shrub layer was by far the most species rich, with both a higher number of species per plot, and a higher Shannon diversity index, than the tree and the herb layer. More than 82% of tree species, 90% of shrubs, 78% of lianas and 70% of herbaceous species were recorded in the shrub layer. Moreover, shrubs contributed for 38% of the 114 strict and narrow endemic plant species recorded in the area, herbs 29%, trees only 20% and climbers 11%. These results indicate that the diversity of trees might not always reflect the overall diversity of the forest in the Campo-Ma’an area, and therefore it may not be a good indicator for the diversity of shrubs and herbaceous species. Furthermore, this suggests that biodiversity surveys based solely on large and medium sized tree species (DBH ≥0cm) are not an adequate method for the assessment of plant diversity because other growth form such as shrubs, climbers and herbs are under-represented. Therefore, inventory design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥1 cm are recorded, is a more appropriate sampling method for biodiversity assessments than surveys based solely on large and medium sized tree species.  相似文献   

6.
伊朗稀疏橡木林片段对草本植物物种多样性和土壤特性的边缘影响 温带和热带森林中的森林边缘现象已经得到了很好的研究,但在稀疏的橡木林片段中的相关研究却较为缺乏。本文研究了稀疏橡木林片段对植物物种多样性和土壤特性的边缘影响。本研究沿着伊朗克尔曼沙赫省3个小型(<10 ha)和3个大型(>10 ha)橡木林片段的3个横断面收集了从边缘到内部的相 关数据,测量了0(森林边缘)、25、50、100和150 m处的草本植物(高度<0.5 m)和土壤特性。使用香农指数量化了物种多样性,使用稀疏标准化方法比较了两个大小不同片段中的物种丰富度,并应用了非度量多维测度排序研究了物种组成的变化。通过随机化测试估算了边缘影响的距离,并利用Tukey HSD事后检验法的广义线性混合模型评估了距边缘距离和片段大小对多样性和土壤特性的影响。研究结果表明,大小片段边缘具有较高的物种丰富度、多样性和均匀度,而大片段边缘的土壤氮和有机碳含量则较内部更低(边缘50 m范围内的变化最大)。大小片段的物种组成、土壤有机碳和氮总量都存在显 著差异。本研究关于这些稀疏森林对草本植物和土壤特性产生显著边缘影响的发现,对于边缘研究,尤其是边缘和草本植物的相关研究具有重大贡献。  相似文献   

7.
In view of the rapid rate of expansion of agriculture in tropical regions, attention has focused on the potential for privately-managed rainforest patches within agricultural land to contribute to biodiversity conservation. However, these sites generally differ in their history of forest disturbance and management compared with other forest fragments, and more information is required on the biodiversity value of these privately-managed sites, particularly in oil-palm dominated landscapes of SE Asia. Here we address this issue, using tropical leaf-litter ants in rainforest fragments surrounded by mature oil palm plantations in Sabah, Borneo as a model system. We compare the species richness and composition of ant assemblages in privately-managed forest fragments (‘high conservation value’ fragments; HCVs) with those in publically-managed fragments of forest (virgin jungle reserves; VJRs) and control sites in extensive tracts of primary forest. In this way, we test the hypothesis that privately-managed and publically-managed forest fragments differ in their species richness and composition as a result of differences in history and management and hence in habitat quality. In support of this hypothesis, we found that HCVs had much poorer habitat quality than VJRs, including lower sizes and densities of trees, less canopy cover, fewer dipterocarp trees and shallower leaf litter. Consequently, HCVs supported only half the species richness of ants in VJRs, which in turn supported 70 % of the species richness of control sites, with vegetation structure and composition explaining 77 % of the variation among forest fragments in ant species richness. HCVs were also much smaller than VJRs but there was only a weak relationship between fragment size and habitat quality, and species richness was not related to fragment size. VJRs supported 78 % of the 156 species found in extensive tracts of forest whereas HCVs supported only 22 %, which was only slightly higher than the proportion previously recorded in oil palm (19 %). These data support previous findings that publically-managed VJR fragments can make an important contribution to biodiversity conservation within agricultural landscapes. However, we suggest that for these HCVs to be effective as reservoirs of biodiversity, management is required to restore vegetation structure and habitat quality, for instance through enrichment planting with native tree species.  相似文献   

8.
At the edges of tropical rain forest fragments, altered abiotic and biotic conditions influence the structure and dynamics of plant communities. In Neotropical rain forests, palms (Arecaceae) are important floristic and ecological elements. Palms’ responses to edge effects appear to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge effects influence the relative proportion of palm adults and juveniles, (2) how distance from the forest edge affects palm density and species richness, (3) how altered forest structure along edges affects palm density. We found that at edges (1) palm communities had a lower proportion of adults relative to juvenile individuals compared to continuous forests, (2) the density of two species of palms and the overall species richness of the palm community tended to decrease toward the edges within forest fragments, and, (3) altered forest structure decreased the density of adult palms. Hence, edge effects on palms were controlled by the degree of modification of the forest structure, and by species responses to edge-related disturbance.  相似文献   

9.
Forest loss and fragmentation drive widespread declines in biodiversity. However, hummingbirds seem to exhibit relative resilience to disturbance, characterized by increasing abundance alongside declining species richness and evenness. Yet, how widespread this pattern may be, and the mechanisms by which it may occur, remain unclear. To fill in this knowledge gap, we investigated habitat- and site-level patterns of diversity, and community composition of hummingbirds between continuous forest (transects n = 16 in ~3500 ha) and more disturbed surrounding fragments (n = 39, 2.5–48.0 ha) in the Chocó rain forest of northwestern Ecuador. Next, we assessed within-patch and patch-matrix characteristics associated with hummingbird diversity and composition. We found higher hummingbird species richness in forest fragments relative to the continuous forest, driven by increased captures of rare species in fragments. Community composition also differed between continuous forest and fragments, with depressed evenness in fragments. Increased canopy openness and density of medium-sized trees correlated with hummingbird diversity in forest fragments, although this relationship became nonsignificant after applying false discovery rate (p < .01). Higher species richness in fragments and higher evenness in the continuous forest highlight the complex trade-offs involved in the conservation of this ecologically important group of birds in changing Neotropical landscapes. Abstract in Spanish is available with online material.  相似文献   

10.
This study was conducted in the Chiapas Highlands, a tropical mountain region where traditional agricultural practices have resulted in a mosaic landscape of forest fragments embedded in a matrix of secondary vegetation and crop fields. The question addressed was how may woody species richness be affected by forest fragment attributes derived from traditional land-use patterns. Species inventories of total woody species, canopy and understorey trees, and shrubs were obtained in 22 forest fragments (5 ha). Multiple regression analyses were applied to examine the effects of size, matrix, isolation and shape of the forest fragments on richness of these species guilds. Fragment size was correlated with shape (r = 0.75) and isolation (r = –0.69), and isolation was correlated with shape (r = –0.75). Total species richness, and number of shrubs and understorey trees in fragments were related to isolation; moreover, additive effects of fragment shape were found for shrubs. The number of canopy species was not related to any fragment variable. Matrix did not help to explain species richness, possibly due to the landscape structure created by the traditional land-use patterns. In addition to size and isolation, we point out the need of considering shape and matrix as additional fragmentation attributes, along with social and economic factors, if we are ever going to be successful in our management and conservation actions.  相似文献   

11.
Coffee agroforestry systems (CAFS) are often considered to be species-rich, potentially contributing to the conservation of indigenous trees. To investigate the conservation capacity of a Kenyan CAFS, all tree species on 62 smallholder coffee farms (covering 39 ha in total) in the Aberdare Mountains of Central Kenya were recorded. In total, 6,642 trees of 59 species were enumerated, with a mean density of 256 trees per ha and a mean species richness of 11.2 species per farm. Indigenous species represented 63 % of the richness but only 31 % of the abundance. For individual farms, as expected, farm size had a positive correlation with tree species richness, but more interestingly there was a negative correlation with tree density. Cluster analysis based on densities of the 18 most important species (defined by an importance value index) revealed two groups of farms: one cluster represented small farms (mean size = 0.4 ha) with high tree species diversity and individual density, particularly of indigenous trees; the other cluster represented large (mean size = 1 ha) and less diverse farms with low tree densities, particularly regarding indigenous species. Tree individuals were unevenly distributed within farms, being more frequent in living fences (38 % of all individuals), the garden zone (20 %) and in coffee plots (18 %). The relative occurrence of indigenous species was also uneven, being greater in living fences and the garden zone. Most adult trees (83 %) were planted, but only 46 % of seedlings were, revealing the active removal of volunteer seedlings by farmers as trees mature. Surveyed coffee farms harboured 20 % of the 135 tree species of the potential natural vegetation for the region, but only 3.6 % of the on-farm tree individuals belonged to the most valuable types of dominant and forest vegetation. Thus, although a source of significant tree cover and heterogeneity at landscape level, the value of these CAFS as circa situm reservoirs of forest tree species is questionable.  相似文献   

12.
The aim of this study is to analyze the effects of habitat loss and forest replacement by cattle pasture on the alpha and beta diversity, abundance, biomass and species composition of dung beetles with different dispersal ability. Dung beetles were captured in 19 forest fragments and neighbouring pastures. Forest fragment area ranged from 3.7 to 4825 ha and in this study were grouped into four categories: small, medium, large and control forest. A total of 35,048 dung beetles representing 101 species were collected. Forest fragments had the highest richness with 81 species, followed by pasture with 58 species. Replacement of forest by pasture reduced species richness; however, due to the proximity and connectivity of these areas with Cerrado patches, pastures also had high species richness, but species composition was independent of adjacent fragments. Small fragments had lower abundance and species richness than our other habitat categories, even pastures. Our results highlight that proximity and connectivity with Cerrado areas influenced the patterns of alpha and beta diversity of dung beetles in fragments and pastures. We highlight that the ability to cross the pasture matrix is a strong adaptive trait for species living in human-modified landscapes. Consequently, species with these abilities are less susceptible to the effects of forest fragmentation and local extinction. Our results reinforce the importance of considering the biogeographic location and distribution pattern of species in forest fragmentation studies.  相似文献   

13.
Ecological studies in tropical rain forests traditionally focus on trees above a threshold diameter at breast height (dbh), since ignoring plant species of the other structural compartments is believed to be an acceptable tradeoff between exhaustiveness and effectiveness. However, the consequences of missing species below a threshold dbh value have been largely neglected so far. We evaluated whether the response of species diversity of ≥10-cm dbh trees was similar to the response of other structural ensembles (namely treelets, saplings, and terricolous herbs) in a lowland tropical rain forest, to three disturbance regimes: natural gap dynamics (control), and selective logging with and without additional thinning. We studied forest vegetation composition and diversity in a 20-yr replicated field experiment comprising nine 1 ha permanent plots established in a semi-deciduous rain forest of the Congo Basin and equally distributed among the three treatments. Once corrected by stem density, species richness was similar between logged (20 years since logging) and untouched old-growth forest stands with respect of trees, but higher with respect of treelets. As disturbance intensity increased, species richness increased within sapling layers but decreased within herb layers, while species spatial turnover (beta diversity) increased in both cases. Regarding the parameters of the partitioned rarefaction curves and relative abundance distribution curves, no correlation was found between trees and any of the other structural compartments. Whilst tree and treelet species composition was similar among treatments, the understories still reflected past disturbance intensity, with a strong response of the sapling and herb layers. These results show that ecological studies based solely on tree layers (dbh  10 cm) are misleading because their response to disturbance cannot be used as a surrogate for the response of other structural ensembles. Long-lasting effects of anthropogenic disturbance on the sapling bank and the herb layer may durably influence the long-term forest dynamics. Since overstory but not understory plant communities have recovered from human disturbances 20 years after silvicultural operations, African tropical rain forest ecosystems may not be as resilient to selective logging as previously thought.  相似文献   

14.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

15.
Background: Habitat loss and fragmentation have been argued to drastically alter the composition of tree assemblages inhabiting small forest fragments but the successional trajectory experienced by such edge-affected habitats remains controversial.

Aims: Here we examine whether small fragments (3.4–91.2 ha) support seedling assemblages more similar to those in 10–70-year-old secondary forests than to those in mature forests, in order to infer to what extent fragments move toward early successional systems.

Methods: Using 59 0.1-ha plots distributed in a fragmented landscape of Brazilian Atlantic forest, we evaluated species richness and functional and taxonomic composition of seedling assemblages in 20 small forest fragments, 19 stands of secondary forest and 20 stands of mature forests in the interior of an exceptionally large fragment (ca. 3500 ha).

Results: Small fragments presented the least species-rich seedling assemblages (17.2 ± 5.7 species), followed by secondary (22.5 ± 5.3), and mature forest (28.4 ± 5.3). Small fragments had seedling assemblages with functional and taxonomic composition more similar to those in secondary than in mature forest. Small fragments had a greater relative richness and abundance of pioneer trees (ca. 40% more), vertebrate-dispersed (6–25%), and those bearing medium-sized seeds (30–70%), while large-seeded species and individuals were reduced (>50% decrement) in comparison to seedling assemblages in mature forest.

Conclusions: By comparing seedlings across a wide range of successional habitats we offer evidence that small forest fragments are experiencing an alternative successional pathway towards an early-successional system with reduced plant diversity.  相似文献   

16.
This study investigates whether it is possible to simplify the complex influence of numerous species on leaf litter decomposition in a diverse tropical forest using functional classifications to predict litter quality, decomposition rate, and nutrient dynamics during decomposition, over a 2-yr period. Thirty-three lowland tropical forest plant species from contrasting growth forms (canopy trees, pioneer trees, lianas, palms, herbs) were studied. Twelve of 18 indices of litter quality varied significantly among growth forms, with canopy trees and palms showing lower litter quality than pioneer trees and herbs. Canopy leaves decomposed more slowly than understory leaves. Decomposition rate and mass loss trended greater ( P <0.1) in herbs and pioneer trees compared with other growth forms. There were no significant differences between monocots and dicots, and no phylogenetic signal for decomposition was observed. Significant correlations between continuous litter quality variables and decomposition rate were observed with correlation coefficients up to 0.72. Litter lignin:Mg, P concentration, and lignin:K, were the litter quality variables most related to decomposition rate. All elements showed significant negative correlations between initial litter concentration and percent remaining, but many elements showed significant correlation between percent element remaining and initial concentrations of other elements, indicating a stoichiometric balance between these elements during decomposition. The results show that although classification by growth form and canopy position are helpful for considering the ecosystem implications of changing community composition, litter quality traits provide additional predictive power for estimating the effects of species change on decomposition.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

17.
Question: Thousands of small isolated forest fragments remain around churches (“church forests”) in the almost completely deforested Ethiopian Highlands. We questioned how the forest structure and composition varied with altitude, forest area and human influence. Location: South Gondar, Amhara National Regional State, Northern Ethiopia. Methods: The structure and species composition was assessed for 810 plots in 28 church forests. All woody plants were inventoried, identified and measured (stem diameter) in seven to 56 10 m x 10‐m plots per forest. Results: In total, 168 woody species were recorded, of which 160 were indigeneous. The basal area decreased with tree harvest intensity; understorey and middle‐storey density (<5 cm DBH trees) decreased with grazing; overstorey density (>5 cm DBH trees) increased with altitude. The dominance of a small set of species increased with altitude and grazing intensity. Species richness decreased with altitude, mainly due to variation in the richness of the overstorey community. Moreover, species richness in the understorey decreased with grazing intensity. Conclusions: We show how tree harvesting intensity, grazing intensity and altitude contribute to observed variations in forest structure, composition and species richness. Species richness was, however, not related to forest area. Our study emphasizes the significant role played by the remaining church forests for conservation of woody plant species in North Ethiopian Highlands, and the need to protect these forests for plant species conservation purposes.  相似文献   

18.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

19.
Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.  相似文献   

20.
The impacts of forest fragmentation on the pteridophyte communities of the Una region of Bahia, Brazil, were investigated by comparing species richness and ensemble diversity among areas of large forest fragments (>900 ha), small forest fragments (<100 ha), and landscape matrix. We inventoried the pteridophytes below 1 m in height in interiors of small fragments, interiors of large fragments (control areas), edges of fragments, edges of continuous forest, capoeiras (initial stages of forest regeneration) and cabrucas (cocoa plantations). All ferns were collected following the plot method (plots of 120×10 m, each). Sampling units were established in the six main ecotypes of the Una region. These units were allocated within three sampling blocks of 5 per 5 km, which were chosen in order to include the largest forest patches that still remain. Results suggest that fragmentation has a negative impact on species richness at the matrix and the edges of forest remnants. A similar negative matrix end edge effect is reported for diversity of those sites measured by the α Log-series Index. However, small forest fragments have pteridophyte species richness and diversity rates similar to large ones so they should be considered of utmost importance to the conservation of forest-related species in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号