首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of several cuproenzymes in relation to the immune system was examined in serum and blood cells from bovines with molybdenum-induced copper deficiency. Five female cattle were given molybdenum (30 ppm) and sulfate (225 ppm) to induce experimental secondary copper deficiency. Ceruloplasmin activity was determined in serum. The Cu,Zn-superoxide dismutase and cytochrome c oxidase activities were measured in peripheral blood lymphocytes, neutrophils, and monocyte-derived macrophages. Copper deficiency was confirmed from decreased serum copper levels and the animals with values less than 5.6 μmol/L were considered deficient. The content of intracellular copper decreased between 40% and 70% in deficient cells compared with the controls. In copper-deficient animals, the serum ceruloplasmin activity decreased to half of the control value. Both of them, the Cu,Zn-superoxide dismutase and the cytochrome c oxidase activities, undergo a significant reduction in leukocytes, showing differences among diverse cell populations. We concluded that the copper deficiency alters the activity of several enzymes, which mediate antioxidant defenses and ATP formation. These effects may impair the cell immune functionality, affecting the bactericidal capacity and making the animals more susceptible to infection.  相似文献   

2.
Inadequate dietary copper is known to result in undesirable metabolic changes in rats and humans. Abnormal cardiac function, leading to sudden death, is a common finding when copper deficient rats are fed a 62% fructose diet. To further study the apparent mineral-carbohydrate relationship to cardiac physiology, 3 male and 3 female swine were randomly assigned to four groups (6 pigs per group) which were fed low copper (1.5 ppm) or copper supplemented (40 ppm) diets with 20% of calories from either fructose or glucose for 10 weeks. In agreement with results from other animal studies, copper deficient swine exhibited decreased plasma ceruloplasmin, erythrocyte superoxide dismutase and plasma lysyl oxidase activities and lowered serum copper. The copper deficient fructose group had the lowest aortic lysyl oxidase activity and hematocrit when compared to the other groups. The relative heart weight in the copper deficient fructose group was 93% greater than the other three dietary groups. The livers of copper deficient fructose fed pigs were also significantly larger. Two enzymes related to cardiac and hepatic function, aspartate and alanine aminotransferase were also measured. Copper deficiency significantly lowered alanine aminotransferase but there was no dietary effect on aspartate amino-transferase. The results of this project indicate that the pig is a sensitive model for the study of cardiovascular abnormalities which occur when fructose is consumed with a low copper diet.  相似文献   

3.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

4.
Product of extracellular-superoxide dismutase catalysis   总被引:2,自引:0,他引:2  
S L Marklund 《FEBS letters》1985,184(2):237-239
Extracellular-superoxide dismutase is a tetrameric enzyme containing four copper atoms. It has previously been shown to catalyse the decay of the superoxide radical, but the resulting product was not determined. In a xanthine oxidase-xanthine system in which about 30% of the electron flux resulted in superoxide radical formation, accumulation of hydrogen peroxide was determined. Catalysis of superoxide radical decay by extracellular-superoxide dismutase was found to result in hydrogen peroxide formation. The catalysed reaction is thus identical to those of previously investigated superoxide dismutases. Human manganese superoxide dismutase was also found to dismute the superoxide radical to hydrogen peroxide and water.  相似文献   

5.
Tyrosinase isolated from cultured human melanoma cells was studied for tyrosine oxygenation activity. l -Tyrosine and d -tyrosine were used as substrates and dopa was measured with HPLC and electrochemical detection as the product of oxygenation. Incubations were performed in the presence or absence of dopamine as co-substrate. Oxygenation of l -tyrosine occurred only in the presence of dopamine as co-substrate. No oxygenation of d -tyrosine was found, and we conclude that human tyrosinase is characterised by exclusive specificity for the l -isomer of tyrosine in its oxygenase function. It has recently been suggested that superoxide anion is a preferential oxygen substrate for human tyrosinase. Incubations were therefore performed with l - and d -tyrosine, human tyrosinase, and xanthine/xanthine oxidase in the system, generating superoxide anion and hydrogen peroxide. Considerable formation of dopa was observed, but the quantity was the same irrespective of whether d -tyrosine or l -tyrosine was used as the substrate. Furthermore, formation of dopa occurred in a xanthine/xanthine oxidase system when bovine serum albumin (BSA) was substituted for tyrosinase. Our results provide no evidence that superoxide anion is an oxygen substrate for human tyrosinase. In the incubate containing xanthine/xanthine oxidase, catalase completely inhibited dopa formation, and superoxide dismutase and mannitol each strongly inhibited dopa formation. The results are compatible with hydroxyl radicals being responsible for the formation of dopa, since such radicals may be secondarily formed in the presence of superoxide anion and hydrogen peroxide.  相似文献   

6.
5-(4-Nitrophenyl)penta-2,4-dienal (NPPD) stimulated NADPH-supported oxygen consumption by rat liver microsomes in a concentration-dependent manner. The NPPD stimulation of O2 uptake was not inhibited by metyrapone and was decreased in the presence of NADP+ and p-hydroxymercuribenzoate. These observations suggest that the NPPD initial reduction step is mediated by NADPH-cytochrome P-450 reductase and not by cytochrome P-450. Spin-trapping studies using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the formation of superoxide anion upon incubation of NPPD, NADPH, DMPO and rat liver microsomes. Hydrogen peroxide generation was also detected in these incubations, thus confirming redox cycling of NPPD under aerobic conditions. NPPD stimulated oxygen consumption, superoxide anion formation and hydrogen peroxide generation by rat kidney, testes and brain microsomes. Other enzymes capable of nitroreduction (NADH dehydrogenase, xanthine oxidase, glutathione reductase, and NADP+ ferredoxin oxidoreductase) were also found to stimulate redox cycling of NPPD. The ability of NPPD to induce superoxide anion and hydrogen peroxide formation might play a role in its reported mutagenicity.  相似文献   

7.
Contrary to the dogma that superoxide anion and hydrogen peroxide formation are highly deleterious to cell function and healthy aging, we suggest this premise is flawed. Superoxide anion and hydrogen peroxide formation are essential to normal cellular function; they constitute a second messenger system absolutely required for the regulation of the metabolome. Embraced within this regulation is the modulation of cellular redox poise, bioenergy output, gene expression and cell differentiation. A key component in the overall process is coenzyme Q10 whose prooxidant function through the formation of superoxide anion and hydrogen peroxide is a major factor in the overall processes. The free radical gas, nitric oxide (similarly to superoxide anion), functions in the regulation of a wide range of cell systems. As part of the normal physiological process, superoxide anion and NO function separately and interactively as second messengers. Superoxide anion and nitric oxide play an intrinsic role in the regulated ordered turnover of proteins, rather than randomly cause protein damage and their inactivation. The proposition that metabolic free radical formation is unequivocally deleterious to cell function is rebutted; their toxicity as primary effectors in the aging process has been overemphasized. The concept that a dietary supplement of high concentrations of small-molecule antioxidants is a prophylactic/amelioration therapy for the aging process and age-associated diseases is questioned as to its clinical validity.  相似文献   

8.
Four different experimental studies are described which were designed to evaluate the role of oxycytochrome P-450 in the formation of superoxide anions and hydrogen peroxide. The use of lipophilic copper chelates with superoxide dismutase like activity revealed that the primary site of interaction of these agents is related to the inhibition of the flavoprotein. NADPH-cytochrome P-450 reductase. Measurements of the proton assisted nucleophilic displacement of superoxide from oxycytochrome P-450 by high concentrations of sodium azide indicated an increase in the rate of hydrogen peroxide formation concomitant with the inhibition of the N-demethylation of ethylmorphine. Studies on the effect of NADH on the rate of hydrogen peroxide formation during NADPH oxidation by liver microsomes failed to reveal a stimulatory or synergistic effect in a manner analogous to results obtained during the cytochrome P-450 dependent oxidation of substrates such as ethylmorphine. These results suggest that hydrogen peroxide formation may not require the reduction of oxycytochrome P-450 to peroxycytochrome P-450. Measurements of the reduction of succinylated cytochrome c using purified cytochrome P-450 and the flavoprotein, NADPH-cytochrome P-450 reductase, directly demonstrate the formation of superoxide anions. It is concluded that oxycytochrome P-450 may decompose to generate hydrogen peroxide.  相似文献   

9.
Culture supernatants from several human leukemic T cell lines were found to contain a macrophage activating factor which enhanced hydrogen peroxide release from human peripheral blood monocyte-derived macrophages. The macrophage activating factor from a T cell line, CCRF-CEM, was characterized biochemically and compared with interferon-gamma, which is also an immunological product of T cells and has a potent macrophage activating activity. In contrast to interferon-gamma, the macrophage activating factor in the culture supernatants bound to an anion exchanger and did not adsorb onto concanavalin A gel. Culture supernatants and active fractions from chromatographies were essentially devoid of anti-viral activity. Anti-human interferon-gamma monoclonal antibody also failed to neutralize the macrophage activating factor from CCRF-CEM. MAF was eluted in the fractions with molecular weight of 40,000 to 60,000 on gel filtration in the presence of a detergent and a salt. MAF was partially purified to about 1,300-fold by the methods described above: chromatography with anion exchangers and gel filtration. It was concluded that MAF from CCRF-CEM was biochemically and immunologically different from interferon-gamma.  相似文献   

10.
The photoreduction of crystal violet to a carbon-centered radical was detected directly by electron spin resonance (ESR) spectroscopy under anaerobic conditions. The linewidth (0.9 G) of this radical was less broad than the linewidth (11.0 G) of the free radical obtained in Trypanosoma cruzi incubations. No crystal violet radical could be detected under aerobic conditions. However, crystal violet was found to convert oxygen to superoxide anion and hydrogen peroxide in the presence of light. This superoxide anion and hydrogen peroxide formation was greatly enhanced by reducing agents such as NAD(P)H. In addition, irradiation of crystal violet did not generate detectable amounts of singlet oxygen.  相似文献   

11.
The reducing capacity toward cytochrome c present in human resting platelets increases upon platelet stimulation, and is partially inhibited by superoxide dismutase. This activity therefore represents the generation of superoxide anion. In order to evaluate hydrogen peroxide formation a quantitative assay by mean of dichlorofluorescin (DCFH) has been set up. The DCFH, trapped inside the cell, is oxidized by hydrogen peroxide to the fluorescent compound DCF. Basal DCF increases during activation of platelets by agonists. Arachidonic acid, calcium ionophore A23187 and to a lesser extent PMA and thrombin are the most effective. N-ethylmaleimide induces a dose-dependent DCFH oxidation and potentiates the effect of agonists. NAD(P)H--cytochrome c reductase enzyme, which catalyzes superoxide anion production, is present in platelets at high specific activity, as well as those enzymes who protect the cells from oxygen reactive species.  相似文献   

12.
The activity of two copper-dependent enzymes, cytochrome c oxidase and copper, zinc-superoxide dismutase, was determined in six tissues of age-matched (13-day-old) copper-deficient mutant and normal mice. In the two mutants 'brindled' and 'blotchy', brain, heart and skeletal muscle had significant enzyme deficiencies. Cytochrome c oxidase was more severely affected than was superoxide dismutase. In these three tissues the degree of deficiency could be correlated with decreased copper concentration; however, enzyme activity was normal in liver, kidney and lung, despite abnormal copper concentrations in these tissues. In nutritionally copper-deficient mice, all six tissues showed decreased enzyme activity, which was most marked in brain, heart and skeletal muscle, the tissues which showed enzyme deficiencies in the mutants. Analysis in vitro of cytochrome c oxidase (temperature coefficient = 2) at a single temperature was found to underestimate the deficiency of this enzyme in hypothermic copper-deficient animals. Cytochrome c oxidase deficiency may therefore be sufficiently severe in vivo to account for the clinical manifestations of copper deficiency. An injection of copper (50 micrograms of Cu+) at 7 days increased cytochrome c oxidase activity by 13 days in all deficient tissues of brindled mice, and in brain and heart from blotchy mice. However, skeletal-muscle cytochrome c oxidase in blotchy mutants did not respond to copper injection. Cytochrome c oxidase activity increased to normal in all tissues of nutritionally copper-deficient mice after copper injection, except in the liver. Hepatic enzyme activity remained severely deficient despite a liver copper concentration three times that found in copper-replete controls. Superoxide dismutase activity did not increase with treatment in either mutant, but its activity was higher than control levels in nutritionally deficient mice after injection. This difference is probably due to sequestration of copper in mutant tissue such as kidney, but a defect in the copper transport pathway to superoxide dismutase cannot be excluded.  相似文献   

13.
Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought–heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought–heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought–heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme‐specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought–heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.  相似文献   

14.
It has been shown that under the influence of superoxide anion (300 nM) and hydrogen peroxide (100 nM) on murine peritoneal macrophages, the depolarization of membrane takes place, and a change in the rate of fluorescein anion efflux from the cells occurs. Hydrogen peroxide (but not superoxide anions) causes a transient increase in the cytoplasmic Ca2+ concentration. These changes are regarded as early signs of macrophage activation. It is assumed that macrophage activation with reactive oxygen intermediates at such a low concentration might be interpreted as follows: a small portion of stimulated phagocytes activates the whole population with the aid of the products of their own oxidative burst.  相似文献   

15.
Silicates causing pneumoconiosis function as Fenton catalysts to generate hydroxyl radicals (.OH) when incubated with hydrogen peroxide and a reducing substance. In contrast, silicates which do not cause pneumoconiosis demonstrate no Fenton activity. Catalytic activity is decreased by pretreatment of silicates with the iron chelators deferoxamine or transferrin. Hemolysis from silicates is decreased by interventions which remove superoxide anion or hydrogen peroxide from the medium, or by pretreatment of dusts with iron chelators. Thus, asbestos and nonfibrous silicates may cause pneumoconiosis through a common oxidant mechanism by catalyzing production of toxic .OH radicals in the lung.  相似文献   

16.
A new model of superoxide dismutase (SOD) functioning has been proposed on the basis of recent data. This model takes into account both experimental data and results of quantum mechanics calculations. One substrate molecule (superoxide radical) binds copper ion in active center of SOD, and the second superoxide radical interacts with a peripheral region of the enzyme. Uncoupled electron from the active center is transferred to the peripheral superoxide anion. This results in formation of oxygen molecule in the active center, and of hydrogen peroxide molecule in the peripheral region.  相似文献   

17.
Prostaglandin synthesis shows dependence on lipid hydroperoxides and resultant oxygen derived radical formation. In view of the importance of dietary copper in cytosolic copper dependent superoxide dismutase (Cu/Zn SOD) activity and the role of SOD in oxygen radical formation, the influence of dietary copper on prostacylin (PGI2) synthesis and SOD activity in rat aorta was examined. Copper deficient (0.5 micrograms Cu/g diet) rats showed a significant 47% reduction in PGI2 synthesis rates by aortic ring incubations in comparison to copper adequate (6.0 micrograms Cu/g diet) animals. Aortic SOD activity was reduced by 46% in copper deficiency in comparison to copper adequate animals. Marginal dietary copper (1.6 micrograms Cu/g diet) significantly reduced aortic SOD activity by 32% but was without effect on aortic ring incubation PGI2 synthesis. These results indicate that dietary copper deficiency, and the resultant decrease in SOD activity, depresses aortic PGI2 synthesis.  相似文献   

18.
Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione   总被引:2,自引:0,他引:2  
The interaction of menadione with reduced glutathione (GSH) led to a removal of menadione and formation of menadione-GSH conjugate and glutathione disulfide (GSSG). The changes in thiol level were essentially biphasic with an initial rapid decrease in GSH and appearance of GSSG (less than 1 min) followed by secondary less pronounced changes. The interaction of menadione and GSH caused an oxygen uptake and both superoxide anion radical and hydrogen peroxide were produced during the reaction, the amount dependent on the GSH/menadione ratio. Catalase did not protect against the initial decrease in GSH level but markedly inhibited the secondary changes while superoxide dismutase had little effect. These results suggest that the initial changes in thiol level are the result in part of a redox reaction between menadione and GSH as well as conjugate formation, whilst the secondary changes reflect conjugate formation and the activity of other oxidants such as hydrogen peroxide. The potential biological significance of this reaction was investigated using hepatocytes depleted of reduced pyridine nucleotides and thus not able to perform enzyme-catalyzed reduction of menadione. In these cells menadione induced GSSG formation at a rate similar to that observed in control cells. This suggests that quinone-induced oxidative challenge caused by the chemical interactions of a quinone and glutathione may have biological relevance.  相似文献   

19.
Copper-deficient rat embryos are characterized by brain and heart anomalies, low superoxide dismutase activity, and high superoxide anion concentrations. One consequence of increased superoxide anions can be the formation of peroxynitrite, a strong biological oxidant. To investigate developmentally important features of copper deficiency, GD 8.5 mouse embryos from copper-adequate and copper-deficient dams were cultured in media that were adequate or deficient in copper. After 48 h, copper-deficient embryos exhibited brain and heart anomalies, and a high incidence of yolk sac vasculature abnormalities compared to controls. Immunohistochemistry of 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine for lipid and DNA damage, respectively, was similar between groups. In contrast, 3-nitrotyrosine, taken as a measure of protein nitration, was markedly higher in the neuroepithelium of the anterior neural tube of copper-deficient embryos than in controls. Repletion of copper-deficient media with copper, or supplementation with copper-zinc superoxide dismutase, Tiron, or glutathione peroxidase did not ameliorate the abnormal development, but did decrease 3-nitrotyrosine in neuroepithelium of copper-deficient embryos. These data support the concept that while copper deficiency compromises oxidant defense and increases protein nitration, additional mechanisms, e.g., altered nitric oxide metabolism may contribute to copper-deficiency-induced teratogenesis.  相似文献   

20.
杨桃提取物体外清除氧自由基作用   总被引:1,自引:0,他引:1  
从杨桃果中提取得到三种提取物为匀浆提取物、蛋白提取物和多糖提取物。采用化学发光法测定这三种提取物清除氧自由基的活性,实验结果:匀浆提取物清除羟自由基(·OH)和H2O2的活性大小相近,而清除超氧阴离子自由基(O2–·)的活性较小,其IC50约为前两者的4倍。蛋白提取物清除O2–·和·OH的活性大小相近,而清除H2O2的活性明显小于前两者,IC50约为前两者的9倍。多糖提取物清除.OH的活性明显大于清除O2–·和H2O2的活性,其IC50约为O2–·的1/22,约为H2O2的1/65。结果表明,杨桃果具有清除O2–·、·OH和H2O2的作用,不同提取物对这些活性氧自由基的清除能力有所不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号