首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

2.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

3.
Subtle left-right biases are often observed in organisms with an overall bilateral symmetry. The evolutionary significance of these directional asymmetries remains uncertain, however, and scenarios of both developmental constraints and adaptation have been suggested. Reviewing the literature on asymmetry in insect wings, we analyze patterns of directional asymmetry in wing size to evaluate the possible adaptive significance of this character. We found that directional asymmetry in wing size is widespread among insects, with left- and right-biased asymmetries commonly observed. The direction of the asymmetry does not appear to be evolutionarily conserved above the species level. Overall, we argue that the very small magnitude of directional asymmetry, 0.7% of the wing size on average, associated with an extremely imprecise expression, precludes directional asymmetry from playing any major adaptive role.  相似文献   

4.
Abstract 1. The form of asymmetry in bilateral organs usually follows the same pattern within single populations. However, some exceptions may occur when a population consists of different phenotypes that are from different ontogenic backgrounds and under different selective pressures. We investigated the asymmetric patterns of mandibles of larvae, females, and males in the stag beetle Prosopocoilus inclinatus. 2. Larval mandibles exhibited directional asymmetry both in length and cross direction, whereas female mandibles showed directional asymmetry in cross direction. These asymmetric structures might be more effective in cutting wood fibres. 3. For the relation of male mandible length to body size, a model with a switch point showed a better fit to the data than a convex curve model. This shows that the males are dimorphic with two distinct morphs. 4. The form of asymmetry in male mandible length differed between the morphs. The smaller males exhibited left‐biased directional asymmetry in common with larvae, whereas the larger males exhibited fluctuating asymmetry. 5. This is a novel finding of a morph‐dependent asymmetry. The morph‐dependent asymmetry in males may be as a result of different selection on each morph or a developmental constraint from larval mandibles to adult ones.  相似文献   

5.
Developmental stability, as measured by fluctuating asymmetry,has been purported to be an indicator of individual quality,and low asymmetry can be selected for by sexual selection processes.However, low asymmetry can also arise due to biomechanical constraintsoperating on trait design, as it is predicted that asymmetrywill decrease mechanical efficiency. Specifically, it has beenpredicted that wing length asymmetry will be negatively relatedto avian flight performance. To date, empirical investigationshave only studied the influence of increasing asymmetry beyondnaturally occurring average values. I examined the influenceof within-individual changes in primary feather developmentalstability on flight performance in European starlings by studyingasymmetry and flight before and after wing molt. Individualsthat exhibited a decrease in wing asymmetry through molt experiencedincreased aerodynamic performance in terms of both angle oftakeoff and level flapping-flight speed. Birds that increasedwing asymmetry suffered a decrease in flight performance. Takeoffspeed and the ability to negotiate an aerial obstacle coursewere unaffected by asymmetry. My data provide empirical supportfor the predicted influence of wing asymmetry on flight, eventhough the changes in asymmetry were very small (mean = 0.47%of trait size) and further indicate the importance of biomechanicalconsiderations in any study of developmental stability  相似文献   

6.
Abstract Three major types of bilateral asymmetry (fluctuating asymmetry, directional asymmetry, and antisymmetry) have long been recognized in the literature. Little, however, is known about transitions between asymmetry types, especially in natural populations. It is often assumed that directional asymmetry and antisymmetry have a larger genetic basis than fluctuating asymmetry. This leads many scientists to exclude traits or populations showing either directional asymmetry or antisymmetry from developmental instability studies, focusing attention on fluctuating asymmetry alone. This procedure may bias the findings and thus our understanding of patterns of bilateral asymmetry and the factors influencing it. To examine changes in bilateral asymmetry across the distribution range of a species, I studied the length of the third toe in 11 chukar partridge (Alectoris chukar) populations across a steep environmental gradient of 320 km within the species' range in Israel. This trait was selected due to its adaptive value in the chukar, a species that spends much of its activity walking, and due to its high measurement repeatability. Moving from the core toward the very extreme periphery of the range, the following four trends are detected: (1) the expression of the directional asymmetry component significantly increases; (2) the frequency of symmetrical individuals in the population significantly decreases, with a sharp decline at the steepest part of the climatic and environmental gradient studied, within the Mediterranean‐desert ecotone; (3) mean asymmetry levels, as estimated using the unsigned difference between the right and left toe, significantly increases; and (4) the range of asymmetry increases such that the most asymmetrical individuals originate from the very edge of the range. These findings provide primary evidence that substantial shifts in asymmetry may occur across short geographical distances within a species' distribution range. They show a continuum between asymmetry types and support the notion that all three types of asymmetry can reflect developmental instability. Further studies of developmental instability should be designed so that they enable detection of transitions between asymmetry types across natural populations. Such a procedure may partly resolve some of the contradictions seen in the literature regarding the relationship between bilateral asymmetry and environmental stress.  相似文献   

7.
Developmental stability reflects the ability of a genotype to develop in the same way under varying environmental conditions. Deviations from developmental stability, arising from disruptive effects of environmental and genetic stresses, can be measured in terms of fluctuating asymmetry, a particularly sensitive indicator of the ability to cope with these stresses during ontogeny. In an inbred Adriatic island population, we expected dental arch fluctuating asymmetry 1) to be higher than in an outbred sample from the same island, and 2) within this population, to increase with the level of inbreeding. Due to environmental stress, we also expected to find higher fluctuating asymmetry in the outbred island population than in an urban reference group from the same country. The material consisted of 506 dental casts of 253 children from 1) the island of Hvar, and 2) Zagreb, Croatia. Three-dimensional coordinates of 26 landmarks spanning the arches were digitized. The analysis partitioned the asymmetry of arch forms into components for directional and fluctuating bilateral asymmetry, using the appropriate Procrustes method (geometric morphometrics). The results corroborated the hypotheses. Fluctuating asymmetry was found to be higher on the island than in Zagreb in all groups and in both jaws, and increased significantly with endogamy level in the lower jaw. There was no significant directional asymmetry in the Zagreb sample and likewise none in the upper jaws of the outbred island group, but significant directional asymmetry in both jaws of the inbred population and also in the lower jaws of the outbred island group. These results suggest an environmental as well as a genetic influence on dental arch asymmetry. Although the lower jaws expressed these two stresses almost additively, the upper jaws appeared to be better buffered. The role of directional asymmetry as a potential indicator of craniofacial developmental instability clearly merits further attention.  相似文献   

8.
While bilateral trait asymmetry is widely recognized to estimate developmental instability, much controversy exists over which types of asymmetry (fluctuating, directional, and/or antisymmetry) to use. Recently it has been hypothesized that the three types are strongly interrelated, and that increased developmental instability may be reflected in a transition from fluctuating to directional asymmetry and/or antisymmetry. Alternatively, habitat disturbance might change the genetic expression of directional asymmetry. We present herein the first empirical evidence for stress-mediated shifts in types of asymmetry in natural populations, by using mixture analysis to model tarsus asymmetry in bird populations exposed to different levels of habitat disturbance. Observed asymmetry patterns almost exclusively consisted of true fluctuating asymmetry in the least disturbed populations, but became progressively mixed with directional asymmetry under increasing disturbance. Failing to unravel these mixtures of different forms of asymmetry may have critical implications for the analysis and interpretation of asymmetry data.  相似文献   

9.
The occurrence of different forms of asymmetry complicates the analysis and interpretation of patterns in asymmetry. Furthermore, between-individual heterogeneity in developmental stability (DS) and thus fluctuating asymmetry (FA), is required to find relationships between DS and other factors. Separating directional asymmetry (DA) and antisymmetry (AS) from real FA and understanding between-individual heterogeneity in FA is therefore crucial in the analysis and interpretation of patterns in asymmetry. In this paper we introduce and explore mixture analysis to (i) identify FA, DA and AS from the distribution of the signed asymmetry, and (ii) to model and quantify between-individual heterogeneity in developmental stability and FA. In addition, we expand mixtures to the estimation of the proportion of variation in the unsigned FA that can be attributed to between-individual heterogeneity in the presumed underlying developmental stability (the so-called hypothetical repeatability). Finally, we construct weighted normal probability plots to investigate the assumption of underlying normality of the different components. We specifically show that (i) model selection based on the likelihood ratio test has the potential to yield models that incorporate nearly all heterogeneity in FA; (ii) mixtures appear to be a powerful and sensitive statistical technique to identify the different forms of asymmetry; (iii) restricted measurement accuracy and the occurrence of many zero observations results in an overestimation of the hypothetical repeatability on the basis of the model parameters; and (iv) as judged from the high correlation coefficients of the normal probability plots, the underlying normality assumption appears to hold for the empirical data we analysed. In conclusion, mixtures provide a useful statistical tool to study patterns in asymmetry.  相似文献   

10.
There is growing evidence from both experimental and non-experimental studies that fluctuating asymmetry does not consistently index stress or fitness. The widely held--yet poorly substantiated--belief that fluctuating asymmetry can act as a universal measure of developmental stability and predictor of stress-mediated changes in fitness, therefore staggers. Yet attempts to understand why the reported relationships between fluctuating asymmetry, stress and fitness are so heterogeneous--i.e. whether the associations are truly weak or non-existent or whether they become confounded during different stages of the analytical pathways remain surprisingly scarce. Hence, we attempt to disentangle these causes, by reviewing the various statistical and conceptual factors that are suspected to confound potential relationships between fluctuating asymmetry, stress and fitness. Two main categories of factors are discerned: those associated with the estimation of developmental stability through fluctuating asymmetry and those associated with the effects of genotype and environment on developmental stability. Next, we describe a series of statistical tools that have recently been developed to help reduce this noise. We argue that the current lack of a theoretical framework that predicts if and when relationships with developmental stability can be expected, urges for further theoretical and empirical research, such as on the genetic architecture of developmental stability in stressed populations. If the underlying developmental mechanisms are better understood, statistical patterns of asymmetry variation may become a biologically meaningful tool.  相似文献   

11.
The phenotypic effects of genetic and environmental manipulations have been rarely investigated simultaneously. In addition to phenotypic plasticity, their effect on the amount and directions of genetic and phenotypic variation is of particular evolutionary importance because these constitute the material for natural selection. Here, we used heterozygous insertional mutations of 16 genes involved in the formation of the Drosophila wing. The flies were raised at two developmental temperatures (18°C and 28°C). Landmark-based geometric morphometrics was used to analyze the variation of the wing size and shape at different hierarchical levels: among genotypes and temperatures; among individuals within group; and fluctuating asymmetry (FA). Our results show that (1) the phenotypic effects of the mutations depend on temperature; (2) reciprocally, most mutations affect wing plasticity; (3) both temperature and mutations modify the levels of FA and of among individuals variation within lines. Remarkably, the patterns of shape FA seem unaffected by temperature whereas those associated with individual variation are systematically altered. By modifying the direction of available phenotypic variation, temperature might thus directly affect the potential for further evolution. It suggests as well that the developmental processes responsible for developmental stability and environmental canalization might be partially distinct.  相似文献   

12.
Adolescent idiopathic scoliosis is the most common spinal deformity affecting children, with a prevalence from mass screening programmes of 1–3%. Despite centuries of study, it remains a problem with no generally accepted theory of aetiology, and disagreement on its natural history and management. Because the deformity consists ultimately of gross left-right asymmetry, a study was undertaken to test the hypothesis that it might be a manifestation of developmental instability. Palmar dermatoglyphics in 112 normal subjects, 62 with non-scoliosis trunk asymmetry and 85 with defined adolescent idiopathic scoliosis were examined and both the absolute right-left difference and the ratio of this to the total were considered. There was increased fluctuating asymmetry of atd difference in those with any asymmetry, scoliotic or not, and increased directional asymmetry of ab and cd ridge counts only in those with pure scoliosis. This suggests that, at adolescence, developmental instability may result in a loss of symmetry in growth, and that in the presence of an increased developmental left-right gradient, this may be of sufficient severity to be classified as deformity and come to the attention of orthopaedic surgeons. This interpretation changes the focus of many previous observations on scoliosis and raises the prospect that developmental stability in humans has relevance to problems hitherto restricted to clinical practice.  相似文献   

13.
Variation in the subtle differences between the right and left sides of bilateral characters or fluctuating asymmetry (FA) has been considered as an indicator of an organism’s ability to cope with genetic and environmental stresses during development. However, due to inconsistency in the results of empirical studies, the relationship between FA and stress has been the subject of intense debate. In this study, we investigated whether stress caused by artificial bidirectional selection for body size has any effect on the levels of FA of different morphological traits in Drosophila ananassae. The realised heritability (h2) was higher in low-line females and high-line males, which suggests an asymmetrical response to selection for body size. Further, the levels of FA were compared across 10 generations of selection in different selection lines in both sexes for sternopleural bristle number, wing length, wing-to-thorax ratio, sex comb-tooth number and ovariole number. The levels of FA differed significantly among generations and selection lines but did not change markedly with directional selection. However, the levels of FA were higher in the G10 generation (at the end of selection) than G0 (at the start of selection) but lower than the G5 generation in different selection lines, suggesting that the levels of FA are not affected by the inbreeding generated during the course of selection. Also, the levels of FA in the hybrids of high and low lines were significantly lower than the parental selection lines, suggesting that FA is influenced by hybridisation. These results are discussed in the framework of the literature available on FA and its relationship with stress.  相似文献   

14.
Characters in animals used in signalling and subjected to strong directional selection often demonstrate (i) an elevated level of fluctuating asymmetry (small random deviations from bilateral symmetry) and (ii) a negative relationship between the degree of individual fluctuating asymmetry and the size of a given character. We tested these two predictions in plants since flowers are subjected to strong directional selection and are involved in signalling to pollinators, whereas leaves are supposed not to be directly involved in signalling. The overall level of fluctuating asymmetry in a number of plant species with bilaterally or radially symmetric flowers was not generally higher in floral traits than in leaves. The level of fluctuating asymmetry in plants was sometimes significantly consistent within individuals. The absolute degree of individual fluctuating asymmetry in floral traits was generally negatively related to the size of the trait, while there was a positive relationship for leaves. The degree of individual fluctuating asymmetry in floral traits was marginally negatively related to the degree of individual fluctuating asymmetry in leaf traits. These patterns of fluctuating asymmetry in plants suggest that (i) the degree of asymmetry in flowers signals different aspects of quality than does the degree of asymmetry in leaves, and that (ii) fluctuating asymmetry in flowers often reflects the phenotypic quality of individual plants.  相似文献   

15.
Asymmetry patterns across the distribution range: does the species matter?   总被引:1,自引:0,他引:1  
An important question in evolutionary ecology is whether different populations across a species range, from core to periphery, experience different levels of stress. The estimation of developmental instability has been proposed as a useful tool for quantifying the degree of environmental and genetic stress that individuals experience during their development. Fluctuating asymmetry, the unsigned difference between the two sides of a bilaterally symmetrical trait, has been suggested to reflect the levels of developmental instability in a population. As such, it has been proposed as a useful tool for estimating changes in developmental instability and in stress response in populations across a range of environmental conditions. Recent studies focusing mostly on birds have detected increasing fluctuating asymmetry from core to periphery across the distribution range, suggesting that peripheral populations may experience higher levels of environmental and/or genetic stress. Most of these comparisons were done for single taxa across a single gradient. However, different species are predicted to respond differently to environmental shifts across the range. We compared asymmetry patterns in wing morphology in populations of two Euchloe butterfly species across their opposing ranges in Israel. Contrary to the patterns observed in birds across the same gradient, bilateral asymmetry did not increase or shift towards the periphery in either of the butterfly species. If fluctuating asymmetry in these traits reflects levels of stress, these results may partly reflect the fact that the range of these two butterfly species is limited by the distribution of their host plant, rather than by abiotic environmental variables. In addition, developing pierids can diapause during harsh seasons and can persist in resource‐rich patches, thus minimizing the environmental stress perceived by developing individuals. We conclude that accounting for differences in species’ life histories and range‐limiting factors is necessary in order to better predict patterns of developmental instability across spatial and environmental gradients. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 313–324.  相似文献   

16.
Charles M. Woolf 《Genetica》1997,101(3):199-208
Arabian bay horses manifest, on the average, more common white markings in their hind legs than their forelegs (anteroposterior asymmetry) and more common white markings in their left legs than their right legs (directional asymmetry). To determine if genetic variation exists for these types of asymmetry, the phenotypic response was studied in bay foals when their dams and sires were selected for the directions of fore-hind and left-right differences. In the fore-hind studies, the quantitative shifts in the bay foals were in the direction specified by the selection scheme and the observed deviations were all statistically significant. The shifts were also consistently in the direction favored by selection in the left-right studies, but only two of six observed deviations were statistically significant using a one-tailed test of significance. Thus, only marginal statistical evidence is available to support the observed consistent responses to selection in the left-right studies. These differential responses are reflected in the magnitudes of the heritability estimates. Based on the overall results, it is concluded that both types of asymmetry have a genetic basis in the Arabian horse, but much more genetic variation is present for anteroposterior asymmetry than for directional asymmetry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Phenotypic plasticity is an important mechanism allowing adaptation to new environments and as such it has been suggested to facilitate biological invasions. Under this assumption, invasive populations are predicted to exhibit stronger plastic responses than native populations. Drosophila suzukii is an invasive species whose males harbor a spot on the wing tip. In this study, by manipulating developmental temperature, we compare the phenotypic plasticity of wing spot size of two invasive populations with that of a native population. We then compare the results with data obtained from wild‐caught flies from different natural populations. While both wing size and spot size are plastic to temperature, no difference in plasticity was detected between native and invasive populations, rejecting the hypothesis of a role of the wing‐spot plasticity in the invasion success. In contrast, we observed a remarkable stability in the spot‐to‐wing ratio across temperatures, as well as among geographic populations. This stability suggests either that the spot relative size is under stabilizing selection, or that its variation might be constrained by a tight developmental correlation between spot size and wing size. Our data show that this correlation was lost at high temperature, leading to an increased variation in the relative spot size, particularly marked in the two invasive populations. This suggests: (a) that D. suzukii's development is impaired by hot temperatures, in agreement with the cold‐adapted status of this species; (b) that the spot size can be decoupled from wing size, rejecting the hypothesis of an absolute constraint and suggesting that the wing color pattern might be under stabilizing (sexual) selection; and (c) that such sexual selection might be relaxed in the invasive populations. Finally, a subtle but consistent directional asymmetry in spot size was detected in favor of the right side in all populations and temperatures, possibly indicative of a lateralized sexual behavior.  相似文献   

18.
Abstract We examined the possible role of hybridization in the invasion process of the African honeybee by testing two hypotheses regarding fluctuating asymmetry (FA), a measure of developmental stability, in wing characteristics: (1) FA should be higher in hybrid versus parental genotypes of African and European races; (2) FA should be lower in African bees compared to hybrid and European workers. Parental and reciprocal hybrid worker genotypes were cross fostered in common-hive rearing environments. We did not find greater FA for wing size and shape in the hybrids compared to both parental types. However, we did find significantly lower FA of shape in the African workers compared to the European and hybrid workers, suggesting that European bees and their hybrids may have compromised fitness relative to African bees. We also found that the two hybrid genotypes significantly differed in overall wing size and shape. If these differences affect wing aerodynamics, then the paternity of hybrids may influence worker performance and could potentially contribute to the loss of European matrilines. Hybridization had few consistent effects on directional asymmetry for wing size and shape. Genotypic factors played a far greater role in determining the effect of hybridization on wing morphology than did differences in rearing environment. Thus, African bees may have lower FA for wing shape (and by inference greater developmental stability) relative to European and hybrid workers, which may contribute to the ability of African bees to displace European honeybee races in invaded regions.  相似文献   

19.
Environmental stress has been suggested to be a major evolutionary force, both through inducing strong selection and because of its direct impact on developmental buffering processes that alter the evolvability of organisms. In particular, temperature has attracted much attention because of its importance as an ecological feature and the relative ease with which it can be experimentally manipulated in the lab. Evolution Canyon, Lower Nahal Oren, Israel, is a well studied natural site where ecological parameters are suspected to drive evolutionary differentiation. In this study, using Drosophila melanogaster isofemale lines derived from wild flies collected on both slopes of the canyon, we investigated the effect of developmental temperature upon the different components of phenotypic variation of a complex trait: the wing. Combining geometric and traditional morphometrics, we find only limited evidence for a differentiation among slopes. Investigating simultaneously phenotypic plasticity, genetic variation among isofemale lines, variation among individuals and fluctuating asymmetry, we could not identify a consistent effect of the stressful conditions encountered on the south facing slope. The prevailing structuring effect is that of the experimentally manipulated temperature which clearly influences wing mean size and shape. Variability, in contrast, is not consistently affected by temperature. Finally, we investigated the specific relationship between individual variation and fluctuating asymmetry. Using metric multi-dimensional scaling we show that the related patterns of wing shape variation are not identical, supporting the view that the underlying developmental processes are to a certain extent different.  相似文献   

20.
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号