首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Bacillus anthracis can be identified on the basis of the detection of virulence factor genes located on two plasmids, pXO1 and pXO2. Thus isolates lacking both pXO1 and pXO2 are indistinguishable from closely related B. cereus group bacteria. We developed a multiplex PCR assay for characterization of B. anthracis isolates, and simultaneous confirmation of the species identity independent of plasmid content. The assay amplifies lef, cya, pag (pXO1) and cap (pXO2) genes, and a B. anthracis specific chromosomal marker, giving an easy-to-read profile. This system unambiguously identified virulent (pXO1+/2+) and avirulent (pXO1+/2, pXO1/2+ and pXO1/2) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria.  相似文献   

2.
The Gram-positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals. Two large virulence plasmids, pXO1 and pXO2, harbour genes required for anthrax pathogenesis and encode secreted toxins or provide for the poly γ- d -glutamic acid capsule. In addition to capsule, B. anthracis harbours additional cell wall envelope structures, including the surface layer (S-layer), which is composed of crystalline protein arrays. We sought to identify the B. anthracis envelope factor that mediates adherence of vegetative forms to human cells and isolated BslA ( B . anthracis S - l ayer protein A ). Its structural gene, bslA , is located on the pXO1 pathogenicity island (pXO1-90) and bslA expression is both necessary and sufficient for adherence of vegetative forms to host cells. BslA assembly into S-layers and surface exposure is presumably mediated by three N-terminal SLH domains. Twenty-three B. anthracis genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.  相似文献   

3.
4.
5.
The self-transmissible plasmid pXO12 (112.5 kilobases [kb]), originally isolated from strain 4042A of Bacillus thuringiensis subsp. thuringiensis, codes for production of the insecticidal crystal protein (Cry+). The mechanism of pXO12-mediated plasmid transfer was investigated by monitoring the cotransfer of the tetracycline resistance plasmid pBC16 (4.2 kb) and the Bacillus anthracis toxin and capsule plasmids, pXO1 (168 kb) and pXO2 (85.6 kb), respectively. In matings of B. anthracis donors with B. anthracis and Bacillus cereus recipients, the number of Tcr transcipients ranged from 4.8 x 10(4) to 3.9 x 10(6)/ml (frequencies ranged from 1.6 x 10(-4) to 7.1 x 10(-2), and 0.3 to 0.4% of them simultaneously inherited pXO1 or pXO2. Physical analysis of the transferred plasmids suggested that pBC16 was transferred by the process of donation and that the large B. anthracis plasmids were transferred by the process of conduction. The transfer of pXO1 and pXO2 involved the transposition of Tn4430 from pXO12 onto these plasmids. DNA-DNA hybridization experiments demonstrated that Tn4430 was located on a 16.0-kb AvaI fragment of pXO12. Examination of Tra- and Cry- derivatives of pXO12 showed that this fragment also harbored information involved in crystal formation and was adjacent to a restriction fragment containing DNA sequences carrying information required for conjugal transfer.  相似文献   

6.
Liu X  Wang D  Wang H  Feng E  Zhu L  Wang H 《PloS one》2012,7(1):e29875
The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.  相似文献   

7.
The plasmids of the members of the Bacillus cereus sensu lato group of organisms are essential in defining the phenotypic traits associated with pathogenesis and ecology. For example, Bacillus anthracis contains two plasmids, pXO1 and pXO2, encoding toxin production and encapsulation, respectively, that define this species pathogenic potential, whereas the presence of a Bt toxin-encoding plasmid defines Bacillus thuringiensis isolates. In this study the plasmids from B. cereus isolates that produce emetic toxin or are linked to periodontal disease were sequenced and analyzed. Two periodontal isolates examined contained almost identical approximately 272-kb plasmids, named pPER272. The emetic toxin-producing isolate contained one approximately 270-kb plasmid, named pCER270, encoding the cereulide biosynthesis gene cluster. Comparative sequence analyses of these B. cereus plasmids revealed a high degree of sequence similarity to the B. anthracis pXO1 plasmid, especially in a putative replication region. These plasmids form a newly defined group of pXO1-like plasmids. However, these novel plasmids do not contain the pXO1 pathogenicity island, which in each instance is replaced by plasmid specific DNA. Plasmids pCER270 and pPER272 share regions that are not found in any other pXO1-like plasmids. Evolutionary studies suggest that these plasmids are more closely related to each other than to other identified B. cereus plasmids. Screening of a population of B. cereus group isolates revealed that pXO1-like plasmids are more often found in association with clinical isolates. This study demonstrates that the pXO1-like plasmids may define pathogenic B. cereus isolates in the same way that pXO1 and pXO2 define the B. anthracis species.  相似文献   

8.
The plasmid pXO2 determining the capsule synthesis has been shown to be transfered into the cells of different strains of Bacillus anthracis (STI-1, Sterne, KM33, KM35) by the transducing bacteriophage CP54ant and by mobilization by pAM beta 1 replicon with the frequencies, consequently, n.10(-8) and n.10(-7). The optimal parameters for the selection of clones having acquired the pXO2 plasmid have been defined. Mobilization for conjugational transfer has been demonstrated for the plasmid pXO1 coding for the production of Bacillus anthracis toxin. The dramatic increase of virulence for white mice has been registered for Bacillus anthracis strains having acquired the pXO2 plasmid replicon.  相似文献   

9.
This study shows that the Bacillus anthracis pXO1 virulence plasmid carries a Rap-Phr system, BXA0205, which regulates sporulation initiation in this organism. The BXA0205Rap protein was shown to dephosphorylate the Spo0F response regulator intermediate of the phosphorelay signal transduction system that regulates the initiation of the developmental pathway in response to environmental, metabolic, and cell cycle signals. The activity of the Rap protein was shown to be inhibited by the carboxy-terminal pentapeptide generated through an export-import processing pathway from the associated BXA0205Phr protein. Deregulation of the Rap activity by either overexpression or lack of the Phr pentapeptide resulted in severe inhibition of sporulation. Five additional Rap-Phr encoding systems were identified on the chromosome of B. anthracis, one of which, BA3790-3791, also affected sporulation initiation. The results suggest that the plasmid-borne Rap-Phr system may provide a selective advantage to the virulence of B. anthracis.  相似文献   

10.
The virulence plasmid pXO1 is responsible for toxin production in Bacillus anthracis. A DNA fragment from pXO1 was isolated and was shown, by sequence analysis, to contain part of a type 1 DNA topoisomerase gene. Attempts to clone the entire wild-type gene, designated topX, in Escherichia coli, were unsuccessful. In order to obtain the complete gene, it was first insertionally inactivated and then cloned in the mutated form. The deduced amino acid sequence of Topo X1 shows similarities to that of the two E. coli type 1 DNA topoisomerases. The N-terminal two-thirds of the putative B. anthracis protein exhibits strongest sequence similarity to topoisomerase III, whereas the C-terminal portion contains cysteine residues that could form three zinc-binding domains, as they do in topoisomerase I. The suggested active-site tyrosine is conserved in all three proteins. The regulation of expression from the topX promoter is modified by addition of a gyrase inhibiting antibiotic. The Topo X1 protein is likely to be involved in the stability of pXO1.  相似文献   

11.
12.
The complete sequencing and annotation of the 181.7-kb Bacillus anthracis virulence plasmid pXO1 predicted 143 genes but could only assign putative functions to 45. Hybridization assays, PCR amplification, and DNA sequencing were used to determine whether pXO1 open reading frame (ORF) sequences were present in other bacilli and more distantly related bacterial genera. Eighteen Bacillus species isolates and four other bacterial species were tested for the presence of 106 pXO1 ORFs. Three ORFs were conserved in most of the bacteria tested. Many of the pXO1 ORFs were detected in closely related Bacillus species, and some were detected only in B. anthracis isolates. Three isolates, Bacillus cereus D-17, B. cereus 43881, and Bacillus thuringiensis 33679, contained sequences that were similar to more than one-half of the pXO1 ORF sequences examined. The majority of the DNA fragments that were amplified by PCR from these organisms had DNA sequences between 80 and 98% similar to that of pXO1. Pulsed-field gel electrophoresis revealed large potential plasmids present in both B. cereus 43881 (341 kb) and B. thuringiensis ATCC 33679 (327 kb) that hybridized with a DNA probe composed of six pXO1 ORFs.  相似文献   

13.
Wang H  Liu X  Feng E  Zhu L  Wang D  Liao X  Wang H 《Current microbiology》2011,62(3):703-709
Plasmid incompatibility, which has no effect on other plasmids or chromosomal genes, can be used to cure a target plasmid. In this report, we successfully cured the plasmid pXO2 from Bacillus anthracis A16 with a newly constructed, incompatible plasmid pKSV7-oriIV and obtained a new pXO2-cured strain, designated A16PI2. This is the first time that a plasmid was cured from the B. anthracis wild-type strain A16 utilizing this principle, which could be considered as an efficacious method to cure large plasmids.  相似文献   

14.
Glycine-induced cryotransformation of plasmids into Bacillus anthracis   总被引:1,自引:0,他引:1  
Different cloning vectors (pC194, pBC16, pUB110, pBD10, pBD8, pAM beta 1) and Bacillus anthracis plasmid pX02 were introduced into B. anthracis by a transformation method. To induce an artificial competence state for uptake of isolated plasmid DNA, the cultures were treated with glycine, to reduce cross-linking of peptidoglycan, followed by freezing and thawing. The procedure is extremely rapid and relatively efficient (maximum transformation efficiency about 10(3) c.f.u. per micrograms DNA) and allows different cloning vectors with molecular masses ranging from 1.8 to 17.7 MDa to be introduced into B. anthracis.  相似文献   

15.
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Human infection occurs after the ingestion, inhalation, or cutaneous inoculation of B. anthracis spores. The subsequent progression of the disease is largely mediated by two native virulence plasmids, pXO1 and pXO2, and is characterized by septicemia, toxemia, and meningitis. In order to produce meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB) that is composed of a specialized layer of brain microvascular endothelial cells (BMEC). We have recently shown that B. anthracis Sterne is capable of penetrating the BBB in vitro and in vivo, establishing the classic signs of meningitis; however, the molecular mechanisms underlying the central nervous system (CNS) tropism are not known. Here, we show that attachment to and invasion of human BMEC by B. anthracis Sterne is mediated by the pXO1 plasmid and an encoded envelope factor, BslA. The results of studies using complementation analysis, recombinant BslA protein, and heterologous expression demonstrate that BslA is both necessary and sufficient to promote adherence to brain endothelium. Furthermore, mice injected with the BslA-deficient strain exhibited a significant decrease in the frequency of brain infection compared to mice injected with the parental strain. In addition, BslA contributed to BBB breakdown by disrupting tight junction protein ZO-1. Our results identify the pXO1-encoded BslA adhesin as a critical mediator of CNS entry and offer new insights into the pathogenesis of anthrax meningitis.Bacillus anthracis, the etiologic agent of anthrax, is a gram-positive spore-forming bacterium that is commonly found in soil (29). The bacterium can infect animals and humans by ingestion, inhalation, or cutaneous inoculation of B. anthracis spores (8). Spores are taken up by resident macrophages that migrate to the lymph nodes (15). Here, the spores germinate into vegetative bacteria, multiply, and then disseminate throughout the host, causing septicemia and toxemia (8). Systemic disease can be complicated by the onset of a fulminant and rapidly fatal hemorrhagic meningitis and meningoencephalitis (27). Anthrax meningitis is associated with a high mortality rate despite intensive antibiotic therapy (24). Biopsy studies after an outbreak of inhalational anthrax and experimental studies of inhalational infection in rhesus monkeys demonstrated the presence of bacilli in the central nervous system (CNS) and pathologies consistent with suppurative and hemorrhagic meningitis in the majority of cases (1, 12). The intentional release of B. anthracis spores (19) during the 2001 bioterrorism event resulted in a case of meningitis (19), necessitating a need for a better understanding of the pathogenesis of anthrax meningitis and CNS infection.To cause meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB). The majority of the BBB is anatomically represented by the cerebral microvascular endothelium; brain microvascular endothelial cells (BMEC) are joined by tight junctions and display a paucity of pinocytosis, thereby effectively limiting the passage of substances and maintaining the CNS microenvironment (4, 5). Despite its highly restrictive nature, certain bacterial pathogens are still able to penetrate the BBB and gain entry into the CNS. The presence of bacilli in the brains of patients (1, 24) and in experimental models of anthrax infection (42, 44) suggests that vegetative B. anthracis cells are able to cross the BBB to initiate meningeal inflammation and the classic pathology associated with meningitis.B. anthracis harbors two large virulence plasmids, pXO1 and pXO2 (8), which are required for full virulence, as strains lacking these plasmids are attenuated in animal models of infection (29). B. anthracis Sterne (pXO1+ pXO2) has been utilized as a vaccine strain (41) but is still widely used in both in vitro and in vivo studies of anthrax infection since it causes lethal disease in mouse models of infection (46). Despite the crucial roles of pXO1 and pXO2 in anthrax disease pathogenesis, very few plasmid-encoded factors have been characterized. The best described are the antiphagocytic polyglutamyl capsule, encoded by biosynthetic enzymes on pXO2, and the anthrax toxin complex comprised of protective antigen, lethal factor (LF), and edema factor (EF), encoded by pXO1 (8, 29). Sequence analysis of the pXO1 plasmid revealed that the majority of plasmid-encoded factors, ∼70%, were of unknown function (31). More recently, in silico analysis identified novel pXO1-encoded proteins with immunogenic potential and relevance for pathogenesis. These included factors with putative adherent and invasive properties (2). Interestingly, two of the immunoreactive proteins were predicted surface layer (S-layer) proteins (2), one of which, B. anthracis S-layer protein A (BslA, pXO1-90), has recently been described and shown to mediate adherence of the vegetative form to host cells (20).Using in vitro and in vivo model systems, we have recently shown that B. anthracis Sterne adheres to and invades brain endothelium (44). This interaction was partially dependent on the pXO1-encoded anthrax toxins; however, the molecular mechanisms that contribute to B. anthracis penetration of the BBB are currently unknown. In this study, we investigate the role of pXO1 in B. anthracis Sterne''s interaction with brain endothelium and identify the encoded BslA adhesin as a critical mediator for BBB attachment and penetration during the pathogenesis of anthrax meningitis.  相似文献   

16.
Akhtar P  Khan SA 《Plasmid》2012,67(2):111-117
The large pXO1 plasmid (181.6kb) of Bacillus anthracis encodes the anthrax toxin proteins. Previous studies have shown that two separate regions of pXO1 can support replication of pXO1 miniplasmids when introduced into plasmid-less strains of this organism. No information is currently available on the ability of the above two replicons, termed RepX and ORFs 14/16 replicons, to support replication of the full-length pXO1 plasmid. We generated mutants of the full-length pXO1 plasmid in which either the RepX or the ORFs 14/16 replicon was inactivated by TargeTron insertional mutagenesis. Plasmid pXO1 derivatives containing only the RepX or the ORFs 14/16 replicon were able to replicate when introduced into a plasmid-less B. anthracis strain. Plasmid copy number analysis showed that the ORFs 14/16 replicon is more efficient than the RepX replicon. Our studies demonstrate that both the RepX and ORFs 14/16 replicons can independently support the replication of the full-length pXO1 plasmid.  相似文献   

17.
The Bacillus anthracis Sterne plasmid pXO1 was sequenced by random, "shotgun" cloning. A circular sequence of 181,654 bp was generated. One hundred forty-three open reading frames (ORFs) were predicted using GeneMark and GeneMark.hmm, comprising only 61% (110,817 bp) of the pXO1 DNA sequence. The overall guanine-plus-cytosine content of the plasmid is 32.5%. The most recognizable feature of the plasmid is a "pathogenicity island," defined by a 44.8-kb region that is bordered by inverted IS1627 elements at each end. This region contains the three toxin genes (cya, lef, and pagA), regulatory elements controlling the toxin genes, three germination response genes, and 19 additional ORFs. Nearly 70% of the ORFs on pXO1 do not have significant similarity to sequences available in open databases. Absent from the pXO1 sequence are homologs to genes that are typically required to drive theta replication and to maintain stability of large plasmids in Bacillus spp. Among the ORFs with a high degree of similarity to known sequences are a collection of putative transposases, resolvases, and integrases, suggesting an evolution involving lateral movement of DNA among species. Among the remaining ORFs, there are three sequences that may encode enzymes responsible for the synthesis of a polysaccharide capsule usually associated with serotype-specific virulent streptococci.  相似文献   

18.
RepX protein encoded by the pXO1 plasmid of Bacillus anthracis is required for plasmid replication. RepX harbours the tubulin signature motif and contains limited amino acid sequence homology to the bacterial cell division protein FtsZ. Although replication proteins are not known to polymerize, here we show by electron microscopy that RepX undergoes GTP-dependent polymerization into long filaments. RepX filaments assembled in the presence of GTPgammaS were more stable than those assembled in the presence of GTP, suggesting a role for GTP hydrolysis in the depolymerization of the filaments. Light scattering studies showed that RepX underwent rapid polymerization, and substitution of GTP with GTPgammaS stabilized the filaments. RepX exhibited GTPase activity and a mutation in the tubulin signature motif severely impaired its GTPase activity and its polymerization in vitro. Unlike FtsZ homologues, RepX harbours a highly basic carboxyl-terminal region and exhibits GTP-dependent, non-specific DNA binding activity. We speculate that RepX may be involved in both the replication and segregation of the pXO1 plasmid.  相似文献   

19.

Background  

Complete sequencing and annotation of the 96.2 kb Bacillus anthracis plasmid, pXO2, predicted 85 open reading frames (ORFs). Bacillus cereus and Bacillus thuringiensis isolates that ranged in genomic similarity to B. anthracis, as determined by amplified fragment length polymorphism (AFLP) analysis, were examined by PCR for the presence of sequences similar to 47 pXO2 ORFs.  相似文献   

20.
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of ~208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号