首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the pathophysiological events of Duchenne muscular dystrophy, we analyzed alterations of protein expression in hindlimb muscles of three month old mdx mice using two-dimensional gel electrophoresis and mass spectrometry. About 40 differentially expressed proteins from the cytosolic fraction and 20 from the microsomal fraction of mdx hindlimb muscles were identified. Among these altered proteins, adenylate kinase 1 (AK 1) was particular interesting because its decrease in abundance was so dramatic (> four-fold). Enzymatic assays demonstrated that AK 1 activity was also decreased in mdx mice. Furthermore, the expression and enzymatic activity of AK 1 were consistently reduced in mdx mice at one and six months of age, suggesting a direct relationship between the lack of dystrophin and alteration of AK 1. Along with AK 1, creatine kinase (CK) provides a major pathway for regulation of nucleotide ratios and energy metabolism in muscles. To gain a better understanding of mechanisms of energy metabolism, we also investigated CK activities in these mdx mice at different ages. Our results suggested that decreased AK 1 expression and activity might result in redistribution of energy flow through the alternative CK system, thus a compensatory potential might limit cellular energy failure in mdx skeletal muscle.  相似文献   

2.
The composition and metabolism of the proteins of the cerebral pallium of the rabbit during the final one-third of the gestational period were measured. During this period, the brain increased in size almost 10-fold and the migration of neuroblasts to form the cerebral cortex became complete. Concurrent with the marked structural changes, the solubility characteristics and electrophoretic distribution of various brain proteins showed little change. However, at the time of birth and in the adult, significant differences in gel electrophoresis patterns were apparent. The rate of synthesis of protein in brain slices from the fetus of 20 days gestation was 3-fold higher per mg of tissue than in the neonate and about 30-fold higher than in the adult. Activities of acidic and neutral proteases per unit weight were virtually the same and nearly constant throughout the late fetal period. However, during this stage, while rapid growth persists, the total protein synthetic activity of the pallium predominated over the total proteolytic activity, whereas sometime after birth the ratios of these activities reversed consequent to a shutdown of the synthetic process.  相似文献   

3.
Abstract— The activities and electrophoretic patterns of creatine and adenylate kinases in the mitochondrial and high speed supernatant fractions of adult mouse brain were determined. Approximately 22 per cent of the activities of both kinases is firmly bound to the mitochondria. On acrylamide gel electrophoresis of creatine kinase, in addition to the major band previously described, there were several other bands found. Although present in both the mitochondrial and supernatant fractions these additional protein bands with creatine kinase activity were significantly more intense in the mitochondrial fraction. There was only onesecondary band of adenylate kinase activity in the mitochondrial fraction but additional bands were found in the soluble fraction.  相似文献   

4.
Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism, especially in tyrosinemia type II, which is caused by deficiency of tyrosine aminotransferase and provokes eyes, skin, and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in this study, we investigated the in vivo and in vitro effects of tyrosine on some parameters of energy metabolism in cerebral cortex of 14-day-old Wistar rats. We observed that 2 mM tyrosine inhibited in vitro the pyruvate kinase (PK) activity and that this inhibition was prevented by 1 mM reduced glutathione with 30, 60, and 90 min of preincubation. Moreover, administration of tyrosine methyl ester (TME) (0.5 mg/g of body weight) decreased the activity of PK and this reduction was prevented by pre-treatment with creatine (Cr). On the other hand, tyrosine did not alter adenylate kinase (AK) activity in vitro, but administration of TME enhanced AK activity not prevented by Cr pre-treatment. Finally, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions and this diminution was prevented by Cr pre-treatment. The results suggest that tyrosine alters essential sulfhydryl groups necessary for CK and PK functions, possibly through oxidative stress. In case this also occurs in the patients, it is possible that energy metabolism alterations may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias.  相似文献   

5.
1. The highest blood concentrations of ketone bodies were found at 5 days of age, after which time the concentration fell to reach the adult value by 30 days of age. 2. Both mitochondrial and cytoplasmic hydroxymethylglutaryl-CoA synthase activities were detected, with highest activities being found in the mitochondria at all stages of development. Activity of the mitochondrial enzyme increases rapidly immediately after birth, showing a maximum at 15 days of age, thereafter falling to adult values. The cytoplasmic enzyme, on the other hand, increased steadily in activity after birth to reach a maximum at 40 days of age, after which time activity fell to adult values. 3. Both mitochondrial and cytoplasmic aceto-acetyl-CoA thiolase activities were detected, with the mitochondrial enzyme having considerably higher activities at all stages of development. The developmental patterns for both enzymes were very similar to those for the corresponding hydroxymethylglutaryl-CoA synthases. 4. The activity of heart acetoacetyl-CoA transferase remains constant from late foetal life until the end of the suckling period, after which time there is a gradual threefold increase in activity to reach the adult values. The activity of brain 3-oxo acid CoA-transferase increases steadily after birth, reaching a maximum at 30 days of age, thereafter decreasing to adult values, which are similar to foetal activities. Although at all stages of development the specific activity of the heart enzyme is higher than that of brain, the total enzymic capacity of the brain is higher than that of the heart during the suckling period.  相似文献   

6.
Intestinal brush border membrane (bbm) fractions have been isolated from fetal and neonatal mice. The existence of discordant developmental patterns of intestinal enzymatic activity derived from total homogenate and bbm fraction was confirmed. It originates chiefly from two phenomena: (a) variations in the state of purity of brush border fractions, and (b) loss of brush border membrane enzyme activities in supernatant that increases with age. The phenomenon of solubility for glucoamylase and alkaline phosphatase is already present two days before birth.  相似文献   

7.
Mammalian mitochondrial ribosomes from rat liver synthesised poly(phenylalanine) from [14C]-Phe-tRNA in the presence of a homologous 10(5) X gav supernatent fraction. The activity depended on the addition of synthetic template and was resistant to cycloheximide. The polyanion spermidine had a stimulatory effect on peptide synthesis in vitro. In contrast to Escherichia coli ribosomes, which also functioned with heterologous supernatant fractions, 55-S mitochondrial ribosomes were inactive when supplemented with heterologous supernatant fractions from E. coli or with purified bacterial elongation factors. EF-T slightly stimulated polyphenylalanine synthesis when added in combination with mitochondrial supernatant fractions. Two-dimensional electrophoretic analysis of the protein content of both supernatant fractions revealed considerable differences in the distribution of the species-specific proteins according to their isoelectric points. The mitochondrial supernatant proteins were in general more basic, and the few acidic proteins did not co-migrate with EF-Tu or EF-G from E. coli.  相似文献   

8.
1. D(-)-beta-hydroxybutyrate dehydrogenase specific activity of rat liver mitochondria changes during ontogenesis: at birth, the activity is low, then increases to a maximum at 12 days, decreases until 50 days to keep constant thereafter. At the same time, mitochondrial protein amount increases regularly while succinatecytochrome c reductase specific activity slightly increases after birth to keep constant afterwards. 2. The observed changes in activity of D(-)-beta-hydroxybutyrate dehydrogenase are not related to possible interactions between the enzyme and phospholids since addition of lecithin to mitochondria does not change the activity. 3. Electrophoresis of mitochondrial proteins isolated from rats at different development stages demonstrates the presence of a protein band characterized by the same electrophoretic mobility as beta-hydroxybutyrate dehydrogenase and by significative changes of its proportion during maturation: the relative amount of this protein increases from the new-born to the 10-12 days old rat, to decrease afterwards. 4. These findings may signify that the increased activity of the enzyme with a maximum at 10-12 days followed by a decrease is related to the rate of the enzymes biosynthesis.  相似文献   

9.
DEVELOPMENT OF MITOCHONDRIAL PYRUVATE METABOLISM IN RAT BRAIN   总被引:10,自引:6,他引:4  
The activities of a number of mitochondrial enzymes involved in the metabolism of pyruvate during development of the rat brain were investigated. The rates of decarboxylation of [1-14C]pyruvate to 14CO2 via pyruvate dehydrogenase and the fixation of H14CO3? in the presence of pyruvate via pyruvate carboxylase by brain homogenates were very low in newborn rats. These rates increased markedly by about four-fold and 15-fold respectively during 10–35 postnatal days. The rates of the fixation of H14CO3? by cerebral homogenates were supported by the development of the activity of pyruvate carboxylase in rat brain. The activities of citrate synthase, aconitase, NAD-malate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and phosphoenol-pyruvate carboxykinase were very low in the particulate fraction of the newborn rat brain. The activities of all these enzymes increased makedly by about three- to 10-fold during 10–35 days after birth. The activity of mitochondrial phosphoenolpyruvate carboxykinase from rat brain was not precipitated by an antibody prepared against rat liver cytosolic phosphoenolpyruvate carboxykinase suggesting that cerebral mitochondrial enzyme is immunologically different from that of the cytosolic form in hepatocytes. The significance of the development of the cerebral mitochondrial metabolism is discussed in relation to biochemical maturation of the brain.  相似文献   

10.
Abstract— Membrane fractions from forebrain of rat were isolated at ages ranging from 5 to 93 days. Among these fractions were total membranes, three fractions isolated by density gradient centrifugation, and three subfractions which consisted of purified myelin and of two supernatant fractions. All membrane fractions showed an increase in protein content during the first postnatal month; however, only the myelin fraction and one of its supernatant fractions showed a prolonged accumulation. Myelin protein increased continually from 0.17 mg/g brain at 15 days to 8.3 mg/g brain at 93 days.
All fractions were analysed for protein composition by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Characteristic changes in protein composition were noted during postnatal development, most of which were pronounced up to the age of 20 days. Among others was a decrease in histones as compared to other proteins, with a concomitant shift in preponderance from the slow- to the fast-migrating histone band. In parallel, other proteins of high molecular weight became more prominent. No myelin could be isolated at 5 and 10 days. The deposition of myelin proteins was parallelled by the appearance of the Wolfgram protein which points to a close correlation of the Wolfgram protein to the process of myelination.  相似文献   

11.
Exchange of phosphatidylinositol and phosphatidylcholine between microsomal and myelin membranes has been demonstrated. This exchange is reversible and catalyzed by soluble proteins from the brain homogenate precipitated at pH 5.1. The extent of exchange of phosphatidylinositol from microsomal membrane to myelin is dependent upon pH and temperature, with an optimum around pH 7 and at 50 degrees C. Maximum exchange was observed at approximately equal amounts of microsomal, myelin, and supernatant proteins. The extent of the catalyzed exchange increases 4- to 8-fold upon using sonicated or heat-treated myelin as an acceptor membrane. Heating of microsomal membranes results in no change. The extent of catalyzed exchange of phosphatidylcholine is less than that of the phosphatidylinositol. The exchange of other phospholipids and glycolipids between microsomal and myelin membranes cannot be demonstrated. The catalytic activity of the pH 5.1 supernatant proteins in rat brain for the exchange of phosphatidylinositol increases with age after birth and reaches a maximum around 21 days of age analogous to the process of myelination. The pH 5.1 supernatant proteins from quaking and jimpy mutant mice has normal catalytic activity.  相似文献   

12.
The development of oxidative metabolism was studied from the late fetal to adult stages in mitochondria isolated from rat kidney. We used the oxygen consumption rate, as an index of inner membrane activity and citrate synthase and fumarase activities as an index of matrix activity and cytochrome c oxidase activity as an index of the number of mitochondria. Fumarase and citrate synthase activities displayed different developmental patterns, suggesting that these Krebs cycle enzymes did not mature synchronously. In fetal mitochondria, net oxygen consumption measured in the presence of succinate or glutamate as substrate, was low; it increased during the day after birth and reached adult level between days 10 and 15. During this period, the levels of citrate synthase and cytochrome c oxidase activity did not change significantly in the isolated mitochondrial fraction. However, in fetal and adult kidney homogenates, these levels increased four-fold, suggesting a corresponding increase in the number of mitochondria. Most of these increases occurred during the 15 days after birth. These results suggest that in rat kidney, mitochondrial maturation precedes the maturation of reabsorptive ion transport and does not limit its development.  相似文献   

13.
NONHISTONE NUCLEAR PROTEINS OF RAT BRAIN   总被引:1,自引:0,他引:1  
Abstract— The rat brain was dissected into cerebral cortex, cerebellum and the remaining regions. From the nuclei, isolated from these three brain sections, were extracted two fractions of nuclear sap proteins (proteins soluble in 014 M NaCl and proteins soluble in 01 M Tris-HCl buffer pH 7-6) and two fractions of nonhistone chromosomal proteins (one soluble in 0-35 M NaCl and one which is not soluble at this salt concentration). Each of these four fractions of the nonhistone nuclear proteins was further separated by polyacrylamide gel electrophoresis. The electrophoretic patterns of the studied fractions of nuclear proteins are qualitatively identical regardless of the brain section from which the analysed protein fraction was isolated. In addition, there arc no qualitative differences in the electrophoretic patterns of nonhistone chromosomal proteins which are and which are not soluble in 0-35 M NaCl. In contrast to the qualitative similarity of the electrophoretic patterns of proteins from different sections of the brain, the amount of the nonhistone nuclear proteins is characteristic for each studied brain section. The ratio of the total nonhistone nuclear proteins to DNA is highest in the brain cortex and lowest in the cerebellum. The most expressed difference between the nuclei is in the ratio of the nonhistone chromosomal proteins soluble in 0-35 M NaCl to DNA. This ratio is 0-52 in the cortex. 0-38 in the mixture of noncortical and noncerebel-lar regions and only 0-18 in the cerebellum. The amount of the three fractions of nonhistone nuclear proteins in the nuclei of individual brain sections is proportional to the activity of the genome in these nuclei. The only exception are the nonhistone chromosomal proteins which are not soluble in 0-35 M NaCl. These proteins and the histones are present in the same amounts in nuclei isolated from all three studied sections of the brain. The results support a proposal that the nonhistone nuclear proteins are involved in the expression of the genetic activity of the cell, without the majority of the proteins in any of the four fractions being the specific regulatory molecules.  相似文献   

14.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

15.
Phospholipid exchange activity in developing rat brain   总被引:2,自引:0,他引:2  
Phospholipid exchange activity has been determined in the supernatant fraction of rat brain from birth through to maturity by measuring the protein-catalysed transfer of total and individual 32P-labelled phospholipids from microsomal membranes to mitochondria, and the transfer of [14C]phosphatidylcholine from liposomes to mitochondria. Transfer activity has also been compared in brain and liver supernatant. Overall phospholipid exchange activity in the brain increased only slightly with age. The activity at birth was 75% of the adult value. However, the transfer of individual phospholipids showed markedly different trends during postnatal brain development. The transfer of phosphatidylinositol (PI) and ethanolamine phospholipids increased postnatally to a maximum at 9 days of age, with lowest values in adult brain. Phosphatidylcholine (PC) transfer increased from 9 days to reach maximum values in the mature brain. The transfer of sphingomyelin was highest immediately after birth. PI transfer activity was higher in brain than liver, while PC and ethanolamine phospholipid transfer activity was higher in liver. The heterogeneity of phospholipid exchange proteins in central nervous system tissue is reflected in the developmental changes in exchange activity towards individual phospholipids. The various exchange proteins appear to have separate induction mechanisms. The presence of exchange-protein activity from birth in the rat indicates the functional importance of phospholipid transport during cell acquisition and membrane proliferation. Activity is not primarily associated with membrane formation such as the formation of the myelin sheath, and therefore is more likely to be involved in the process of phospholipid turnover.  相似文献   

16.
Abstract: Key enzymes of ketone body metabolism (3-hydroxybutyrate de-hydrogenase, 3-oxo-acid: CoA transferase, acetoacetyl-CoA thiolase) and glucose metabolism (hexokinase, lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase) have been measured in the brains of foetal, neonatal and adult guinea pigs and compared to those in the brains of neonatal and adult rats. The activities of the guinea pig brain ketone-body-metabolising enzymes remain relatively low in activity throughout the foetal and neonatal periods, with only slight increases occurring at birth. This contrasts with the rat brain, where three- to fourfold increases in activity occur during the suckling period (0–21 days post partum), followed by a corresponding decrease in the adult. The activities of the hexokinase (mitochondrial and cytosolic), pyruvate dehydrogenase, lactate dehydrogenase and citrate synthase of guinea pig brain show marked increases in the last 10–15 days before birth, so that at birth the guinea pig possesses activities of these enzymes similar to the adult state. This contrasts with the rat brain where these enzymes develop during the late suckling period (10–15 days after birth). The development of the enzymes of aerobic glycolytic metabolism correlate with the onset of neurological competence in the two species, the guinea pig being a "precocial" species born neurologically competent and the rat being a "non-precocial" species born neurologically immature. The results are discussed with respect to the enzymatic activities required for the energy metabolism of a fully developed, neurologically competent mammalian brain and its relative sensitivity to hypoxia.  相似文献   

17.
Abstract—
  • 1 The distribution of total cerebral proteins from five strains of adult mice: Quaking (Qk), C57BL/6, CBA, DBA/2 and C57BR have been compared according to various subcellular brain fractions. The saline or detergent-soluble proteins were separated in a pH discontinuous system by analytical disc electrophoresis on polyacrylamide gel, either at pH 8·9 (acidic proteins) or pH 4·3 (basic proteins).
  • 2 Significant quantitative differences and higher electrophoretic mobility were observed both in the high molecular weight acidic proteins of myelin and in the low molecular weight soluble proteins of myelinic and synaptosomal fractions of the Quaking mutant. Differences between Qk and control were inapparent in nuclear, mitochondrial or microsomal protein fractions.
  • 3 The in vivo incorporation of tritiated amino acids into the brain proteins of the Qk mouse have been studied. An increased level of incorporation was found in two soluble, acidic proteins of the supernatant cell sap.
  • 4 The electrophoretic patterns of the brain proteins from three other inbred strains (CBA, DBA/2 and C57BR) were identical except DBA/2, whose soluble and acidic proteins of the supernatant cell sap were characterized by two supplementary minor bands. The observed protein abnormalities have been discussed in relation to the alteration of the CNS myelination and to the genetic lesions presumed to be responsible for a cellular multienzymic induction.
  相似文献   

18.
Endogenously labeled toad oocytes and early developing embryos were employed to evaluate the phospholipid metabolism in whole embryos and in subcellular fractions. The whole embryo and postmitochondrial supernatant display a linear increase in relative specific activity as development proceeds, although higher values were reached by mitochondrial and yolk platelet fractions. In all the subcellular fractions the half-lives of the acid-soluble pool were similar and ranged from 2.5 to 3.5 days. Conversely the phospholipid half-lives were only similar in mitochondrial and postmitochondrial supernatant fractions.  相似文献   

19.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   

20.
Abstract— The ability of guinea-pig brain to hydrolyse peptides and aminoacyl amides was investigated. The majority of hydrolase activity against both peptides and aminoacyl amides tested was found to reside in the 30,000 g supernatant. Starch gel electrophoretograms of the 30,000 g supernatants showed that seven of the twelve peptides tested were each hydrolysed by more than one peptide hydrolase and that each of the peptide hydrolases observed were capable of hydrolysing more than one peptide. The peptide hydrolases in the 30,000 g supernatant fraction of guinea-pig brain were found to have very similar electrophoretic mobilities to the peptide hydrolases in the 30,000 g supernatant fraction from guinea-pig intestinal mucosa. Only one hydrolase with activity against L-Leu-NH, could be detected in 30,000 g supernatant of guinea-pig brain using starch gel electrophoresis followed by staining and its electrophoretic mobility was identical to that of one of the peptide hydrolases in the same fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号