首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
陈玥  周景文  陈坚 《生物工程学报》2021,37(6):1827-1844
维生素C是一种人体必需的维生素,在食品制药等领域拥有巨大的市场。工业上维生素C主要以微生物发酵生产的2-酮基-L-古龙酸为前体,然后通过内酯化反应获得。微生物发酵中,山梨糖途径和葡萄糖酸途径因为转化率高一直是研究的热点。文中从维生素C生物合成相关脱氢酶的角度阐述了:山梨糖途径和葡萄糖酸途径中关键脱氢酶在定位、底物谱、辅因子和电子传递上的特点;山梨糖途径和葡萄糖酸途径中面临的主要问题和改造策略等。最后讨论了维生素C生物合成中山梨糖途径和葡萄糖酸途径可能的研究方向。  相似文献   

2.
氧化葡萄糖酸杆菌酶学和分子生物学研究   总被引:1,自引:0,他引:1  
对氧化葡萄糖酸杆菌初级代谢途径中的关键酶及分子生物学研究做了系统的评述 ,展望了分子技术改造氧化葡萄糖酸杆菌和优化 2 KGA代谢途径的可能。  相似文献   

3.
脑内神经元的能量主要依赖神经胶质细胞利用葡萄糖代谢产物乳酸供应;脑内星形胶质细胞和少突胶质细胞主要通过葡萄糖转运体途径和钠依赖性葡萄糖转运蛋白途径摄取葡萄糖,同时也可通过连接蛋白介导的缝隙连接或半通道途径形式在细胞间进行葡萄糖转运。这些途径的异常与某些神经系统疾病的病理生理学特性密切相关,故深入了解葡萄糖进入胶质细胞及其在胶质细胞之间的转运机制对脑代谢异常相关疾病的防治有重要的指导意义。  相似文献   

4.
食用菌多糖降血糖机理研究   总被引:10,自引:1,他引:9  
国内外对食用菌多糖的降血糖作用及其机制进行了研究。研究发现许多食用菌多糖具有良好的降血糖功效,并可通过不同途径发挥降血糖作用。即可通过促进胰岛素的分泌、改善胰岛素抵抗、加速肝葡萄糖代谢及外周组织对葡萄糖的利用、减少对葡萄糖的吸收等途径发挥降血糖作用。  相似文献   

5.
麦芽糖和葡萄糖对粪产碱杆菌发酵合成凝胶多糖有着显著的影响,为了详细分析两种底物对凝胶多糖合成的影响机制,利用恒化培养实验及稳态碳平衡代谢分析,研究发现在稀释速率为0.1h-1时,利用麦芽糖和葡萄糖为碳源底物的条件下粪产碱杆菌的微观代谢途径通量有较大的差异。以麦芽糖为底物时凝胶多糖的摩尔得率为53.8%,比葡萄糖为碳源时的摩尔得率(36.9%)高出了45.8%以上。同时以麦芽糖为碳源时HMP途径的绝对代谢通量比葡萄糖时的通量提升了40%以上。这条途径通量的增加,提升了NADPH还原力供给速率,促进了依赖于还原力NADPH的凝胶多糖合成途径通量,提升了碳源底物向产物的摩尔转化速率。而且代谢流分析结果显示ED途径通量和能量提供也是影响粪产碱杆菌凝胶多糖合成效率的关键因素。麦芽糖作为碳源底物过程中维持的较低的残留葡萄糖浓度解除了高葡萄糖浓度条件下对凝胶多糖合成的抑制,能够实现更高通量的ATP能量提供效率,更加促进了凝胶多糖合成通量。  相似文献   

6.
葡萄糖通过"中心代谢途径"降解为丙酮酸的过程对于生物体物质及能量的代谢具有重要的作用.古菌的葡萄糖酵解过程具有与真核生物以及细菌葡萄糖代谢显著不同的特征.生化性质分析、基因组学、代谢组学等研究结果表明,古菌糖酵解Embden-Meyerhof(EM)与Entner-Doudoroff(ED)途径具有许多与真核生物及细菌经典的EM与ED途径不同的特异性酶类,其中ED糖酵解代谢又可分为非磷酸化与半磷酸化的糖酵解途径.古菌独特的ED糖酵解途径在代谢路径、酶、调节位点、表达调控、能量转化等方面与真核生物及细菌经典的糖酵解途径均存在明显的差异,反映了其适应极端的生理环境而形成可塑性代谢路径的能力.本文综述了古菌ED葡萄糖降解过程中的各种酶、调控机制以及能量转化特征的最新进展,并对进一步的研究方向做了展望.  相似文献   

7.
细菌纤维素(BC)是一种新型的可再生、可降解的生物高分子材料。为了最大程度的发挥BC生产菌株K.rhaeticus 315的生产能力,本文首先对K.rhaeticus 315进行全基因组测序,通过功能基因的注释、分析碳源代谢流向。结果显示,该菌株碳代谢特征之一是缺乏磷酸果糖激酶的编码基因,不能通过EMP途径代谢糖类碳源,而是主要通过PPP途径和TCA途径代谢碳源,维持菌体生长和BC合成。由于葡萄糖脱氢酶的存在,该菌株在合成BC的同时生成大量副产物—葡萄糖酸。为此,本文通过敲除葡萄糖酸合成酶相关基因,即葡萄糖脱氢酶基因gcd,构建葡萄糖脱氢酶基因缺失重组株(gcd^-),将葡萄糖酸的生成量降低了77%。  相似文献   

8.
葡萄糖二酸是一种高附加值的有机酸,广泛用于食品、医药和化工领域。为获得生产葡萄糖二酸的微生物细胞工厂,通过共表达小鼠来源的肌醇加氧酶(MIOX)及恶臭假单胞菌来源的醛酸脱氢酶(Udh),在酿酒酵母Saccharomyces cerevisiae CEN.PK2-1C中构建了葡萄糖二酸合成途径,产量为(28.28±3.15)mg/L。在此基础上,通过调控前体肌醇的合成途径,发现肌醇-1-磷酸合成酶(INO1)是葡萄糖二酸合成途径的限速酶,过量表达INO1,葡萄糖二酸产量达到(107.51±10.87)mg/L,提高了2.8倍。进一步弱化竞争支路中磷酸果糖激酶(PFK1)的表达,最终葡萄糖二酸的产量达到(230.22±10.75)mg/L,为进一步获得高产葡萄糖二酸细胞工厂提供基础。  相似文献   

9.
利用Red重组系统对野生大肠杆菌Escherichia coli磷酸烯醇式丙酮酸-糖磷酸转移酶系统(Phosphoenolpyruvate:carbohydrate phosphotransferase system,PTS)进行修饰改造,敲除PTS系统中关键组分EⅡCBGlc的编码基因(ptsG),磷酸组氨酸搬运蛋白HPr的编码基因(ptsI),同时敲入来源于运动发酵单胞菌Zymomonas mobilis的葡萄糖易化体(Glucose facilitator)编码基因(glf),构建重组大肠杆菌,比较测定并系统评价了基因敲除和敲入对细胞的生长、葡萄糖代谢和乙酸积累的影响。敲除基因ptsG和ptsI造成大肠杆菌PTS系统部分功能缺失,细胞生长受到一定限制,敲入glf基因后,重组大肠杆菌能够利用Glf-Glk(葡萄糖易化体-葡萄糖激酶)途径,消耗ATP将葡萄糖进行磷酸化并转运进入细胞。通过该途径转运葡萄糖能够提高葡萄糖利用效率,降低副产物乙酸生成,同时能够使更多的碳代谢流进入后续相关合成途径,预期能够提高相关产物产量。  相似文献   

10.
王毳  刘叶  巩旭  刘龙  康振 《生物工程学报》2018,34(11):1772-1783
葡萄糖二酸是一种高附加值天然有机酸,已经广泛应用于疾病防治、生产聚合物材料等领域。在葡萄糖二酸的合成途径中,肌醇加氧酶MIOX所催化的肌醇转换为葡萄糖醛酸的过程是整个途径的限速步骤。通过应用将葡萄糖二酸浓度与绿色荧光蛋白荧光强度相结合的筛选系统,从突变体文库中筛选出3株有潜力的肌醇加氧酶突变体(K59V/R60A、R171S和D276A),使MIOX活性得到提高。重组菌株Escherichia coli BL21(DE3)/MU-R171S的葡萄糖二酸产量相比于未突变菌株提高了36.5%。  相似文献   

11.
Abstract Suspensions of maltose-grown cells of the hyperthermophilic archaeon Pyrococcus furiosus , when incubated at 90°C with 35 mM [1-13C]glucose or [3-13C]glucose, consumed glucose at a rate of about 10 nmol min−1 (mg protein)−1. Acetate (10 mM), alanine (3 mM), CO2 and H2 were the fermentation products. The 13C-labelling pattern in alamine and acetate were analyzed. With [1-13C]glucose the methyl group of both alanine and acetate was labelled; with [3-13C]glucose only the carboxyl group of alanine was labelled whereas acetate was unlabelled. Extracts of maltose-grown cells contained glucose isomerase (12.8 U mg−1, 100°C), ketohexokinase (0.23 U mg−1, 100°C), and fructose 1-phosphate aldolase (0.06 U mg−1, 100°C). Enzymes catalyzing the formation of fructose 1,6-bisphosphate from fructose 1-phosphate or fructose 6-phosphate could not be detected. As publihed previously by our group and other authors P. furiosus also contains enzymes of glyceraldehyde conversion to 2-phosphoglycerate according to a non-phosphorylated Entner-Doudoroff pathway, of dihydroxyacetone phosphate conversion to 2-phosphoglycerate according to the Embden-Meyerhof pathway, and of 2-phosphoglycerate conversion - via pyruvate - to acetate and alanine. Based on the enzyme activities in P. furiosus , the following pathway for glucose degradation to alanine and acetate in cell suspensions is proposed which can explain the [13C]glucose labelling data: glucose→ fructose → fructose 1- phosphate → dihydroxyacetone phosphate + glyceraldehyde and further conversion of both trioses to alanine and acetate via pyruvate.  相似文献   

12.
Enzyme activities were determined quantitatively in individual rat oocytes to study their energy metabolism during maturation. Low hexokinase activity and high activities of lactate dehydrogenase and enzymes in the phosphate pathway, i.e., glucose 6-P and 6-P gluconate dehydrogenases, were characteristic of immature oocytes. Hexokinase may be a rate-limiting enzyme that enables oocytes to use glucose as an energy source. During maturation, the activities of hexokinase, phosphofructokinase, and malate dehydrogenase increased significantly, suggesting that the glycolytic pathway, as well as the tricarboxylic acid cycle, developed as the first meiotic division proceeded. In contrast, the activities of glucose 6-P and 6-P gluconate dehydrogenases decreased in maturing oocytes. The observation that the enzyme pattern in mature oocytes resembles more closely that in somatic cells appears to be significant, especially in light of previous studies showing this developmental trend in preimplantation embryos.  相似文献   

13.
Both of the two forms of glucoamylase (glucoamylases I and II) from the wheat bran culture of Mucor rouxianus hydrolyzed amylopectin, amylose, glycogen, soluble starch, maltotriose, and maltose, but did not act on isomaltose and isomaltotriose. Phenyl α-maltoside was hydrolyzed into glucose and phenyl α-glucoside by both glucoamylases. Maltose was hydrolyzed about one-fifth as rapidly as amylopectin. Both enzymes produced glucose from amylopectin, amylose, glycogen, soluble starch in the yields of almost complete hydrolysis. They hydrolyzed amylose with the inversion of configuration, producing the β-anomer of glucose. Glucoamylase II hydrolyzed raw starch at 3-fold higher rate than glucoamylase I. The former hydrolyzed rice starch almost completely into glucose, whereas the latter hydrolyzed it incompletely (nearly 50%).  相似文献   

14.
Incorporation studies administering 2H- and 13C- labeled mevalonate (MVA) and 13C-labeled glucose to suspension cultured cells of the liverwort, Ptychanthus striatus, were carried out in order to examine the biosynthesis of the phytyl side-chain of chlorophyll a. Administration of 13C- and 2H-labeled MVA provided evidence for the involvement of the MVA pathway in the phytyl side-chain biosynthesis and preferential labeling of the farnesyl diphosphate (FPP)-derived portion. An alternate labeling pattern in the phytyl side-chain was observed which was slightly different to the nonequivalent labeling in other liverworts, such as Heteroscyphus planus and Lophocolea heterophylla and in the hornwort, Anthoceros punctatus. The labeling pattern observed after the administration of 13C-labeled glucose revealed the simultaneous involvement of the non-MVA pathway in the phytol biosynthesis of P. striatus cells.  相似文献   

15.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

16.
目的探讨磷酸酰肌醇3激酶/蛋白激酶B(PI3K/Akt)信号通路在高糖诱导足细胞分泌Ⅳ型胶原(ColⅣ)中的作用。方法体外培养小鼠肾足细胞,给予高糖刺激(30mmol/L)处理0h、12h、24h、48h,正常糖(5mmol/L)分别培养相同时间作为对照,采用免疫细胞化学染色法和蛋白印迹法检测p-Akt、ColⅣ的表达。结果高糖可以诱导足细胞内p-Akt蛋白表达,随刺激时间延长分泌增多,24h达到高峰,各时间点相比有统计学差异(P〈0.05);足细胞内ColⅣ蛋白表达随高糖刺激时间延长逐渐增多,并与p-Akt表达呈正相关关系(r=0.834,P=0.001)。结论高糖可能通过激活PI3K/Akt通路诱导足细胞分泌Ⅳ型胶原。  相似文献   

17.
Thermoproteus tenax is a hyperthermophilic, facultative heterotrophic archaeum. In this organism the utilization of the two catabolic pathways, a variant of the Embden-Meyerhof-Parnas (EMP) pathway and the modified (nonphosphorylative) Entner-Doudoroff (ED) pathway, was investigated and the first enzyme of the ED pathway, glucose dehydrogenase, was characterized. The distribution of the 13C label in alanine synthesized by cells grown with [1-13C]glucose indicated that in vivo the EMP pathway and the modified ED pathway operate parallel, with glucose metabolization via the EMP pathway being prominent. To initiate studies on the regulatory mechanisms governing carbon flux via these pathways, the first enzyme of the ED pathway, glucose dehydrogenase, was purified to homogeneity and its phenotypic properties were characterized. The pyridine-nucleotide-dependent enzyme used both NAD+ and NADP+ as cosubstrates, showing a 100-fold higher affinity for NADP+. Besides glucose, xylose was used as substrate, but with significantly lower affinity. These data suggest that the physiological function of the enzyme is the oxidation of glucose by NADP+. A striking feature was the influence of NADP+ and NAD+ on the quaternary structure and activity state of the enzyme. Without cosubstrate, the enzyme was highly aggregated (mol. mass > 600 kDa) but inactive, whereas in the presence of the cosubstrate the aggregates dissociated into enzymatically active, homomeric dimers with a mol. mass of 84 kDa (mol. mass of subunits: 41 kDa). The N-terminal amino acid sequence showed striking similarity to the respective partial sequences of alcohol dehydrogenases and sorbitol dehydrogenases, but no resemblance to the known pyridine-nucleotide-dependent archaeal and bacterial glucose dehydrogenases. Received: 25 October 1996 / Accepted: 15 April 1997  相似文献   

18.
We have previously shown that several gap junction uncouplers increase the uptake of glucose in astrocytes. The aim of the present work was to study whether the increase in glucose uptake was a consequence of the inhibition of gap junction communication and the purpose of this effect. Our results show that alpha-glycyrrhetinic acid and endothelin-1 increase the uptake of glucose in highly, but not in poorly, coupled astrocytes. This effect depended on connexin 43 levels and was abolished when the inhibition of gap junction communication was prevented by tolbutamide or ouabain. The inhibition of gap junctions increased the rate of glucose incorporation into DNA and RNA, which was inhibited by treatment with dehydroepiandrosterone, an inhibitor of glucose-6-phosphate dehydrogenase, the regulatory enzyme of the pentose phosphate pathway. The inhibition of gap junctions significantly increased astrocyte proliferation, which was counteracted by tolbutamide. These effects were not observed in poorly coupled astrocytes expressing low levels of connexin 43. The increase in astrocyte proliferation caused by gap junction inhibition was prevented when either glucose uptake or the pentose phosphate pathway were inhibited. We conclude that the inhibition of gap junction communication induces astrocyte proliferation, resulting in an enhancement of glucose uptake and its utilization through the pentose phosphate pathway to provide ribose-5-phosphate for the synthesis of nucleic acids.  相似文献   

19.
Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1‐pCU‐PxylAB, and L. plantarum NCIMB 8826 ΔldhL1‐pLEM415‐xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1‐pCU‐PxylAB and L. plantarum NCIMB 8826 ΔldhL1‐pLEM415‐xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1‐pCU‐PxylAB, and L. plantarum NCIMB 8826 ΔldhL1‐pLEM415‐xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397–1403, 2016  相似文献   

20.
The Rate of Utilization of Glucose Via Hexosemonophosphate Shunt in Brain   总被引:2,自引:1,他引:1  
Abstract: The concentration of 6-phosphogluconate in the brain increased from 0–24 nmol/g in the controls to 1430 and 1506 nmol/g in rats treated with 50 mg of 6-aminonicotinamide/kg of body weight. A dose-dependent increase in the concentrations of glucose and glucose 6-phosphate as well as of 6-phosphogluconate was found in the brains of 6-aminonicotinamide-treated rats. The biochemical changes and symptoms of neurological disorder in 6-aminonicotinamide-treated rats were not due to hypothermia. The rate of utilization of glucose via the hexosemonophosphate shunt was determined by isolation of gluconate from 6-phosphogluconate and measurement of its [14C]content at short time intervals afte injection of [U-14C]glucose into 6-aminonicotinamide-treated rats; it was 16.5 nmol of glucose utilized/min per g of brain, and represented approximately 2.3% of the overall utilization of glucose in the brain. A highly significant correlation was observed between the concentration of 6-phospho-gluconate and the concentration of glucose 6-phosphate and free glucose. The validity of this correlation was supported by the results of previous investigations involving several other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号