首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation is the effective manner to sterilize mass-reared insects. The negative impacts of this procedure are not limited to damage on reproductive cells. Gamma-radiation damages the epithelial tissue of midgut, which affects the alimentation in insects. Irradiated males alter their mating behavior over time because of the depression of metabolic activity by sterilization. In this study, we evaluated the male mating performance and sexually compatibility of irradiated male Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae) with a 200-Gy dose, as currently used in the SIT program in Okinawa Prefecture, throughout 16 d after irradiation in the laboratory. The mating ability of irradiated males did not differ from that of control males for about a week. However, the mating ability of irradiated male drastically decreased thereafter. We consider that irradiated male C. formicarius elegantulus with a 200-Gy dose had no major effect on male mating behavior approximately for a week after irradiation.  相似文献   

2.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation not only damages the reproductive cells but the somatic cells as well. The mating behavior of irradiated males may be altered over time due to the depressed metabolic activity brought about by sterilization. In this study, we evaluated the mating behavior (copulation behavior, mating performance, and ability of sperm transfer) of irradiated males in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 16 days after irradiation in the laboratory. The mating performance of males irradiated with a 150 Gy dose, as currently used in the SIT program in Okinawa prefecture for E. postfasciatus, decreased compared to that of control after day 7. As a result, we considered that irradiation had no major effect on male mating behavior for approximately 1 week after irradiation.  相似文献   

3.
Sterile insect technique (SIT) is used, among other biological control tools, as a sustainable measure for the management of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in many agricultural regions where this pest can trigger severe economic impacts. The tendency of wild females to remate multiple times has been deeply studied; it has been a common point of controversy when evaluating SIT programmes. Nevertheless, the remating potential of the released sterile males remains unknown. Here, under laboratory conditions, the remating capability of mass-reared sterile males was determined. Wild-type virgin females were offered to sterile males (Vienna-8 strain), which had the opportunity to mate up to four consecutive times. The remating assays were carried out at 24 hr, 48 hr, 4 days and 7 days after the first mating. At the end of each tested time period, males were divided according to their mating response, mated or unmated, and subsequently reused for the next round of mating assays. The frequency of successful remating in each tested time period was obtained. Insemination was confirmed by determining the sperm transfer in mated female spermathecae by quantitative real-time PCR. Our results demonstrate that 73% of the mass-reared sterile males were able to remate 24 hr after the first mating, 55% of which remated again the day after. Close to 25% of the V8 sterile males tended to copulate in all of the four mating opportunities. The qPCR analysis of the spermathecae contents verified an effective transfer of V8 sperm to wild females with every mating; 99% of copulations resulted in sperm transfer. These findings shed light on the remating potential of V8 sterile males, an aspect until now underestimated in many SIT programmes.  相似文献   

4.
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids.  相似文献   

5.
For successful sterile insect technique (SIT), synchronized copulation between invaded females and sterilized males is required. Understanding the mating time of the invaded strain is an aid in synchronizing and thus improving the effectiveness of SIT. We previously demonstrated a relationship between variation at two sites of a circadian clock gene cryptochrome (cry) (cry1212 and cry1865) and circadian behavior in the melon fly Bactrocera cucurbitae (Coquillett). Here we investigated the relationship in two other populations, Taiwan1 (T1) and Taiwan2 (T2), which may re-invade Okinawa. The results showed that T1 exhibited a lower frequency of the S-type allele, which was observed in early mating flies in the strains in Okinawa, than T2 at the site of cry1212. In addition, T1 showed a longer circadian period than T2. We also noted that the cry1212 site showed higher amino acid sequence conservation than cry1865 by comparing CRY1 among five insect species. These results suggest that genotyping of only the cry1212 site of trapped flies enables an immediate estimate of the mating time of the B. cucurbitae population from Taiwan and that cry1212 would be more likely to be involved in determining the mating time than cry1865.  相似文献   

6.
The sterile insect technique (SIT) is currently used to control Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). However, mass‐rearing can alter the quality of released males. If males that are mass‐reared have behaviours different from those of their wild counterparts, then this may diminish the effectiveness of SIT. Questions remain as to whether wild females may be able to detect the male condition before, during and/or after copulation with a mass‐reared male. In the present study, copula duration, female remating, female fecundity and fertility of both mass‐reared and wild A. ludens are evaluated. Marked differences are found between mass‐reared and wild females. Specifically, mating latency is longer and copula duration is shorter for wild females compared with mass‐reared females. Importantly, there are no significant differences in mating latency, copula duration or remating probability between wild females paired with either mass‐reared or wild males. All mass‐reared females remate, whereas only approximately half of the wild females remate after first mating with either a wild or mass‐reared male. Fecundity of wild females mated to either wild or mass‐reared males is approximately one‐third lower than that of mass‐reared females, confirming that mass‐reared females may have been selected for high fecundity and are adapted to laboratory conditions. Fertility of females that mate with a wild male for only 10 min is not significantly different from that achieved via a full‐length copulation. By contrast, females mating with mass‐reared males need copulation durations of at least 40 min to achieve fertility comparable with that achieved via a full‐length copulation. The findings of the present study have important implications for A. ludens controlled through SIT and broaden our understanding on the copulatory and post‐copulatory behaviours between wild females and mass‐reared males.  相似文献   

7.
Accurate estimates of remating in wild female insects are required for an understanding of the causes of variation in remating between individuals, populations and species. Such estimates are also of profound importance for major economic fruit pests such as the Mediterranean fruit fly (Ceratitis capitata). A major method for the suppression of this pest is the sterile insect technique (SIT), which relies on matings between mass-reared, sterilized males and wild females. Remating by wild females will thus impact negatively on the success of SIT. We used microsatellite markers to determine the level of remating in wild (field-collected) Mediterranean fruit fly females from the Greek Island of Chios. We compared the four locus microsatellite genotypes of these females and their offspring. Our data showed 7.1% of wild females remated. Skewed paternity among progeny arrays provided further evidence for double matings. Our lowest estimate of remating was 3.8% and the highest was 21%.  相似文献   

8.
The sterile insect technique (SIT) can be a powerful method for pest control without the negative environmental effects of conventional pesticides. The goal is to induce pest population collapse by arranging conditions where wild females mate only with sterile males and thus do not produce offspring. In applying the SIT, it can be important to understand both how subtle alterations of sterile and wild insect behaviour alter the effectiveness of the SIT in different applications, and how this is reflected in the data gathered through associated monitoring devices, often pheromone traps.Our work in this paper is motivated by the use of SIT against orchard pests, particularly the codling moth (Cydia pomonella). We investigate how individual behaviours affect the mating rate between wild females and sterile males, and the corresponding sterile to wild trap catch ratio, through a preliminary individual-based model. Our analysis suggests that the sterile males may not be effective at interfering with mating between wild moths during springtime releases, while at the same time monitoring information gathered from trap catches may give no indication of reduced effectiveness of the SIT.  相似文献   

9.
Eight hour copulation of the melon fly,Bactrocera cucurbitae, which usually mates at dusk and finishes copulation at dawn, inhibited female remating, while 3 h copulation did not. Copulation of females with either normal or virgin sterile males inhibited female remating. Sperm-depleted sterile males inhibited female remating at the same rate as normal males when the copulation duration was 8 h, indicating that existence or amount of sperm in females' spermathecae is not important in remating inhibition. Females of a wild strain remated later than females of a mass-reared strain, irrespective of strains of 1st and 2nd males. This suggests that the females may control their own remating, or that there is a difference between wild and mass-reared strains in their sensitivity to a male substance that inhibits females' receptivity.  相似文献   

10.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

11.
Abstract  The effects of domestication and irradiation on the mating behaviour of males of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) were investigated by caging wild, laboratory-domesticated and sterile (laboratory-domesticated, gamma-irradiated) males with wild females. Mating behaviour of mass-reared males was different from that of wild males, although behaviour of wild and sterile males was similar. Mass-reared males engaged in mounting of other males much more frequently than wild and sterile males, and began calling significantly earlier before darkness. Unnatural selection pressures imposed in mass-rearing conditions may explain these changes in mass-reared male behaviour. Male calling did not appear to be associated with female choice of mating partners, although this does not exclude the possibility that calling is a cue used by females to discriminate among mating partners. Despite differences in behaviour, frequency of successful copulations and mating success were similar among wild, mass-reared and sterile males.  相似文献   

12.
The sterile insect technique (SIT), used for the control of many tephritid fly pests, is based on the rearing and release of large numbers of sexually competitive sterile insects into a wild population. In the interest of reducing expenses and increasing SIT effectiveness, genetic sexing strains (GSS) have been developed. These strains allow the production and release of only males. The objective of our study was to assess the effects of pre-release adult exposure to methoprene and to females on the mating propensity and mating competitiveness of GSS sterile males of Anastrepha ludens (Loew) (Diptera: Tephritidae). GSS sterile males were kept on a protein-sugar (protein-fed) or a protein-sugar-methoprene diet and were exposed to different proportions of females for the normal pre-release period of 5 days. Using laboratory and field-cage bioassays, we examined the influence of methoprene and female presence on the mating success of sterile males of 3–9 days old, in competition for wild females with untreated males and with wild males. Methoprene and female exposure had no significant effects on male mating success in the laboratory, whereas age had a positive relationship with the number of copulations observed. However, in field-cage bioassays, males exposed to females obtained a higher number of copulations than unexposed control males. Possible implications of these findings for programs that use GSS and especially for the campaign against Mexican fruit flies are discussed.  相似文献   

13.
Physiological and behavioral phenomena of many animals are restricted to certain times of the day. Many organisms show daily rhythms in their mating. The daily fluctuation in mating activity of a few insects is controlled by an endogenous clock. The fruitfly, Drosophila, is the most suitable material to characterize the genetic basis of circadian rhythms of mating because some mutants with defective core oscillator mechanism, feedback loops, have been isolated. D. melanogaster wild-type display a robust circadian rhythm in the mating activity, and the rhythms are abolished in period or timeless null mutant flies (per(01) and tim(01)), the rhythms are generated by females but not males. Disconnected (disco) mutants which have a severe defect in the optic lobe and are missing lateral neurons show arrhythmicity in mating activities. Thus, the lateral neurons seem to be essential for the circadian rhythm in mating activity of Drosophila. Furthermore, an anti-phasic relation in circadian rhythms of the mating activity was detected between D. melanogaster and their sibling species D. simulans. The Queensland fruit flies or wild gypsy moth also show species-specific mating rhythm, suggesting that species-specific circadian rhythms in mating activity of insect appear to cause a reproductive isolation.  相似文献   

14.
The male annihilation technique (MAT) and sterile insect technique (SIT) are often used to control pestiferous tephritid fruit flies (Diptera: Tephritidae). MAT involves the deployment of traps containing a male attractant and insecticide with the goal of drastically reducing male abundance and ultimately eliminating the entire population. SIT, which involves the mass production, sterilization, and release of the target species, may also be implemented to achieve final extirpation. Generally, simultaneous implementation of MAT and SIT is counterproductive, because the presence of large numbers of male-specific traps in the environment (MAT) would greatly reduce the number of sterile males available for copulating with wild females (SIT). However, studies on the Queensland fruit fly, Bactrocera tryoni (Froggatt), indicate that concurrent use of MAT and SIT may be feasible. Sexually mature males of B. tryoni are attracted to the raspberry ketone and its synthetic analogue cue-lure. Males of B. tryoni fed raspberry-ketone-supplemented diet when newly emerged showed lower attraction to cue-lure baited traps than control males. In addition, newly emerged males provided this diet displayed accelerated sexual maturation, which would allow the early release of sterile males and reduce pre-release holding costs. Here, we examined whether the addition of raspberry ketone to the adult diet of male melon flies, Zeugodacus cucurbitae (Coquillett), produced effects similar to those observed for B. tryoni. Despite using similar methods, no significant effect of raspberry ketone-supplemented diet on time to sexual maturity, survival, mating competitiveness, or attraction to cue-lure baited traps in mass-reared Z. cucurbitae males.  相似文献   

15.
Previous research revealed that exposure to ginger root oil, Zingiber officinale Roscoe, containing the known male attractant (a-copaene) increased the mating success of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), from a newly established laboratory colony. The goal of the current study was to determine whether exposure to ginger root oil likewise enhanced the mating competitiveness of irradiated C. capitata males from a 5-yr-old mass-reared strain. Mating tests were conducted in field cages containing guava trees (Psidium guajava L.) to monitor the mating frequency of irradiated, mass-reared and wild males competing for wild females. In the absence of chemical exposure, wild males outcompeted the mass-reared males and obtained 74% of all matings. However, following exposure to ginger root oil (20 microl for 6 h), the mating frequencies were reversed. Whether exposed as mature (3-d-old) or immature (1-d-old) adults, mass-reared males achieved approximately 75% of all matings in tests conducted 2 or 4 d following exposure, respectively. Irradiated, mass-reared males prevented from contacting the oil directly (i.e., exposed to the odor only for 6 h) still exhibited a mating advantage over wild males. In an additional study, signaling levels and female arrivals were compared between males exposed to ginger root oil and nonexposed males, but no significant differences were detected. The implications of these findings for the sterile insect technique are discussed.  相似文献   

16.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

17.
The recent success of the sterile insect technique (SIT) in eradicating Glossina austeni from Zanzibar has stimulated interest in applying this technology to control Glossina pallidipes. However, little is known about the mating behaviour of this species in relation to the development and implementation of an effective SIT programme. The effect of age on male and female receptivity to mating was evaluated together with copulation duration, sperm transfer and the growth of the accessory gland and follicle A in males and females, respectively. Females and males reached their optimal sexual receptivity 9–13 days after emergence. Mean copulation duration was 20–30 min for mature males and females. The growth of follicle A and the accessory gland (apical body) was a function of age of females and males, respectively. Ovulation was not observed in virgin females up to 15 days of age whereas mated females ovulated by day 9. Males aged 7–15 days were equally effective in inseminating. Cages of males and females of different ages were set up to monitor puparial production in relation to optimization of mass rearing. The results are discussed in relation to the development of an efficient mass rearing protocol for this species and an optimal release strategy for sterile males.  相似文献   

18.
The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations. Although the effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females, the use of gamma radiation to induce sterility negatively impacts reproductive cells as well as somatic cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. In the current study, we evaluated the effect of irradiation dose intensity on fertility, mating propensity, and mating competitiveness in sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae), for 16 d after irradiation. Although the mating propensity of males irradiated with 200 Gy, the dose currently used to induce complete sterility of C. f. elegantulus in the SIT program in Okinawa Prefecture, was equal to that of nonirradiated weevils for the first 6 d, the mating propensity of males irradiated with doses between of 75 and 150 Gy was maintained for the first 12 d. The potential fertilization ability of weevils was highly depressed compared with the control weevils, even in those treated with 75 Gy. Mating performance was severely compromised in weevils that were irradiated with a dose of 100 Gy or more. These results demonstrate that partial sterilization can be highly advantageous in eradication programs for the sweetpotato weevil. We discuss the advantages of the application of partial irradiation in insect eradication programs.  相似文献   

19.
Mass-reared insects may differ in their behavioral traits depending on whether they have undergone diapause. We studied the mobility of mass-reared diapaused and nondiapaused Cydia pomonella (L.) with a focus on understanding the effect of mating status and treatment with gamma radiation as these insects are destined for use in an areawide program that uses the sterile insect technique (SIT). Actograph-measured mobility was assessed one gender at a time for 4 h during which the photoperiod transitioned from day to night. We tested 20-30 individuals per treatment. For experiments on the effect of mating status, we used 24-48-h-old adults (diapause [D]-virgin, D-mated, standard [N]-virgin, and N-mated), which is the typical age class that is released in the SIT program. Diapaused females were significantly more mobile than females reared through standard production, whereas no differences were detected in male mobility because of rearing strategy. Mated females were significantly more mobile than virgin females, whereas no difference in mobility because of mating status was detected for males. Mated females were significantly more mobile than mated males. In contrast, virgin females were significantly less mobile than virgin males. For experiments on the effect of treatment with gamma radiation, adults from all rearing strategies and treatments (D-0Gy, D-100Gy, D-250Gy, N-0Gy, N-100Gy, and N-250Gy), were tested simultaneously. Adult males were tested at two different constant temperatures (25 and 20 degrees C), whereas adult females were tested only at 25 degrees C. For standard-reared adults, we found a significant linear decrease in mobility as the radiation dose increased from 0 to 250 Gy. In contrast, the relationship between mobility and dose of radiation was quadratic for diapaused males and absent for diapaused females.  相似文献   

20.
McInnis DO  Shelly TE  Komatsu J 《Genetica》2002,116(1):117-124
The success of the sterile insect technique (SIT) depends critically upon mating between released sterilized males and wild females. In Hawaii, improvements in the efficiency of sterile males were attempted on two separate fronts – mating enhancement and survival improvement. In the former, two methods have been investigated – selective breeding and aromatherapy. In the latter, flies which survived in field cages for several days were selected and bred to produce progeny with enhanced survival ability compared to control flies. Regarding mating selection, standard laboratory-reared males that successfully mated with wild females in field cages were allowed to breed. F1 offspring were inbred, then the selection procedure was repeated for four additional cycles. In the aromatherapy procedure, laboratory-reared males were exposed to ginger root oil for several hours 1 day prior to testing in field cages. Compared to controls, the selected flies improved the mating competitiveness of male flies ca. 3-fold, irradiation reduced this increase to ca. 2.5-fold. Exposing the selected, hybrid strain raised the fitness of the lab males to ca. 9-fold that of wild males. In the ongoing survival selection study, we have obtained lines in which the selected males survived ca. 2-fold better than laboratory control males over several days in an outdoor field cage, with food and water provided. The goal is to combine the traits of higher survival and mating ability into a single strain for SIT release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号