首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The killer toxin KT 28 of Saccharomyces cerevisiae strain 28 is primarily bound to the mannoprotein of the cell wall of sensitive yeasts. The mannoprotein of S. cerevisiae X 2180 was purified; gel filtration and SDS-PAGE indicated an estimated Mr of 185,000. The ability to bind killer toxin KT 28 increased during purification of the mannoprotein. Removing the protein part of the mannoprotein by enzymic digestion or removing the alkali-labile oligosaccharide chains by beta-elimination did not destroy the ability to bind killer toxin KT 28. However, binding activity was lost when the 1,6-alpha-linkages of the outer carbohydrate backbone were hydrolysed by acetolysis. The separated oligomannosides of the side chains also failed to bind toxin, indicating that the main mannoside chains were essential for the receptor activity. The reversible adsorption of killer toxin to mannoprotein was demonstrated by linking it covalently to Sepharose and using this material for affinity chromatography. A 90-fold increase in the specific activity of a preparation of killer toxin KT 28 was achieved in this way.  相似文献   

2.
The linear (1 --> 6)-beta-d-glucans pustulan and luteose were effective competitive inhibitors of killer toxin action. Affinity chromatography of killer toxin on a pustulan-Sepharose column showed that toxin bound directly to a (1 --> 6)-beta-linked polysaccharide. Other polysaccharides found in yeast cell walls, including (1 --> 3)-beta-d-glucan, mannan, chitin, and glycogen, were not effective as inhibitors of toxin. Fractionation of yeast cell walls was attempted to identify the toxin receptor in sensitive Saccharomyces cerevisiae. The receptor activity was retained among the insoluble glucans in alkali-washed cells; yeast mannan and alkali-soluble glucan had little receptor activity. A minor fraction of receptor activity was removed from alkali-washed cells by hot acetic acid extraction, a procedure which solubilized some (1 --> 6)-beta-d-glucan and glycogen. The major fraction (>70%) of receptor activity remained with the acid-insoluble (1 --> 6)-beta-and (1 --> 3)-beta-glucans. Zymolyase, an endo-(1 --> 3)-beta-d-glucanase, solubilized a substantial fraction of the receptor activity in the acid-insoluble glucans. The receptor activity in yeast cell walls was periodate and (1 --> 6)-beta-d-glucanase sensitive, but was resistant to (1 --> 3)-beta-d-glucanase and alpha-amylase. The acid-soluble glucan fractions of a sensitive strain and a krel-l receptor-defective toxin-resistant mutant were examined. The krel-l strain had a reduced amount (ca. 50%) of (1 --> 6)-beta-d-glucan compared with the sensitive parent strain. A sensitive revertant of the krel-l strain regained the parental level of glucan. These results implicate (1 --> 6)-beta-d-glucan as a component of the yeast cell wall receptor for killer toxin.  相似文献   

3.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

4.
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.  相似文献   

5.
Hansenula mrakii secretes extracellularly a killer toxin which kills sensitive Saccharomyces cerevisiae. In protoplasts of this yeast, the killer toxin selectively inhibited the synthesis of alkali-insoluble acid-insoluble polysaccharides consisting mainly of beta-glucan, but did not inhibit either the synthesis of other cell wall polysaccharides, such as mannan, chitin and alkali-insoluble acid-soluble polysaccharides, or the synthesis of protein. Consistent with these results, the toxin was inhibitory to the beta-(1,3)-glucan synthetase activity of a cell-free extract from sensitive S. cerevisiae.  相似文献   

6.
A homogenate of mechanically broken, freshly grown Saccharomyces cerevisiae X2180 cells catalyzes the transfer of mannosylphosphate units from guanosine diphosphate mannose to reduced alpha1 leads to 2-[3H]mannotetraose to yield reduced mannosylphosphoryl [3H]-mannotetraose. The product is analogous in structure to the phosphorylated mannan side chains, which suggests that the enzymic activity is involved in mannoprotein biosynthesis in the intact cell. The mannosylphosphate transferase activity, localized in a membrane fraction obtained by differential centrifugation at 100,000 x g, was solubilized by Triton X-155 and purified 250-fold by ammonium sulfate precipitation and by ion exchange and gell filtration chromatographies. The enzyme requires MN2+ OR Co2+ ions for activity and is stimulated by various detergents. The mnn2 and mnn3 mannan mutants of S. cerevisiae possess normal levels of mannosylphosphate transferase activity, whereas the mnn4 mutant cells contain very low, if any, activity. This is consistent with a previous conclusion that the mnn4 mutation affects the mannosylphosphate transferase activity, whereas the mnn2 and mnn3 strains possess phosphate-deficient mannans because they are unable to synthesize the appropriate side chain precursors. A new mannan mutant class with the mnn4 chemotype was isolated, but the mutation proved to be recessive and nonallelic with the mnn4 locus. This new locus is designated mnn6.  相似文献   

7.
O Pines  H J Yoon    M Inouye 《Journal of bacteriology》1988,170(7):2989-2993
The gene for the double-stranded RNA (dsRNA)-specific RNase III of Escherichia coli was expressed in Saccharomyces cerevisiae to examine the effects of this RNase activity on the yeast. Induction of the RNase III gene was found to cause abnormal cell morphology and cell death. Whereas double-stranded killer RNA is degraded by RNase III in vitro, killer RNA, rRNA, and some mRNAs were found to be stable in vivo after induction of RNase III. Variants selected for resistance to RNase III induction were isolated at a frequency of 4 X 10(-5) to 5 X 10(-5). Ten percent of these resistant strains had concomitantly lost the capacity to produce killer toxin and M dsRNA while retaining L dsRNA. The genetic alteration leading to RNase resistance was localized within the RNase III-coding region but not in the yeast chromosome. These results indicate that S. cerevisiae contains some essential RNA which is susceptible to E. coli RNase III.  相似文献   

8.
9.
Lactic acid bacteria (LAB) Lactobacillus plantarum ML11-11, an isolate from Fukuyama pot vinegar, and yeast Saccharomyces cerevisiae form significant mixed-species biofilm with direct cell-cell contact. Co-aggregation of L. plantarum ML11-11 and S. cerevisiae cells, mediated by the interaction between surface protein(s) on L. plantarum ML11-11 cells and surface mannan of S. cerevisiae cells, contributes significantly to mixed-species biofilm formation. In this study, co-aggregation activities of yeast mutants that were deleted of genes related to mannan biosynthesis were investigated to clarify the mannan structures essential for interaction with L. plantarum ML11-11. Among the 12 deletion mutants which had various incomplete mannan structures, only the mnn2 mutant lost the co-aggregation activity. In the mnn2 mutant, the gene coding the activity of attaching first branching mannose residue to mannan main chain is deleted and therefore the mnn2 mutant has unbranched mannan. From this result, it is clarified that the specific structure, consisted of mannan main chain to which are attached side chains containing one or more mannose residues, is critical for co-aggregation with L. plantarum ML11-11.  相似文献   

10.
The susceptibility of sensitive yeast to killer toxins is known to depend on various factors, such as the selected killer toxin, the exposed yeast strain, its growth phase and the state of culture under given experimental conditions. The aim of this paper was to find whether individual cells from one culture are equally susceptible to the impact of the killer toxin. For this purpose the rhodamine B assay in a modified form was used. In order to observe the fate of individual cell the method of fluorescence video microscopy with a digital picture analysis was applied. Four selected groups of specific cells (with no, small, medium, and large bud, respectively) were investigated. Different sensitivity of Saccharomyces cerevisiae cells to the killer toxin K1 was observed in these cell groups. The most susceptible appeared to be the cells which were in S-phase (cells with the small buds); the least susceptible were the M-phase cells with large buds. The enhanced susceptibility in S-phase results probably from coincidence in higher porosity of the cell wall, accumulation of surface receptors, and enlarged growth activity at the surface cell structures.  相似文献   

11.

Background

Virus infected killer strains of the baker’s yeast Saccharomyces cerevisiae secrete protein toxins such as K28, K1, K2 and Klus which are lethal to sensitive yeast strains of the same or related species. K28 is somewhat unique as it represents an α/β heterodimeric protein of the A/B toxin family which, after having bound to the surface of sensitive target cells, is taken up by receptor-mediated endocytosis and transported through the secretory pathway in a retrograde manner. While the current knowledge on yeast killer toxins is largely based on genetic screens for yeast mutants with altered toxin sensitivity, in vivo imaging of cell surface binding and intracellular toxin transport is still largely hampered by a lack of fluorescently labelled and biologically active killer toxin variants.

Results

In this study, we succeeded for the first time in the heterologous K28 preprotoxin expression and production of fluorescent K28 variants in Pichia pastoris. Recombinant P. pastoris GS115 cells were shown to successfully process and secrete K28 variants fused to mCherry or mTFP by high cell density fermentation. The fluorescent K28 derivatives were obtained in high yield and possessed in vivo toxicity and specificity against sensitive yeast cells. In cell binding studies the resulting K28 variants caused strong fluorescence signals at the cell periphery due to toxin binding to primary K28 receptors within the yeast cell wall. Thereby, the β-subunit of K28 was confirmed to be the sole component required and sufficient for K28 cell wall binding.

Conclusion

Successful production of fluorescent killer toxin variants of S. cerevisiae by high cell density fermentation of recombinant, K28 expressing strains of P. pastoris now opens the possibility to study and monitor killer toxin cell surface binding, in particular in toxin resistant yeast mutants in which toxin resistance is caused by defects in toxin binding due to alterations in cell wall structure and composition. This novel approach might be easily transferable to other killer toxins from different yeast species and genera. Furthermore, the fluorescent toxin variants described here might likewise represent a powerful tool in future studies to visualize intracellular A/B toxin trafficking with the help of high resolution single molecule imaging techniques.
  相似文献   

12.
The yeast Schwanniomyces occidentalis produces a killer toxin lethal to sensitive strains of Saccharomyces cerevisiae. Killer activity is lost after pepsin and papain treatment, suggesting that the toxin is a protein. We purified the killer protein and found that it was composed of two subunits with molecular masses of approximately 7.4 and 4.9 kDa, respectively, but was not detectable with periodic acid-Schiff staining. A BLAST search revealed that residues 3 to 14 of the 4.9-kDa subunit had 75% identity and 83% similarity with killer toxin K2 from S. cerevisiae at positions 271 to 283. Maximum killer activity was between pH 4.2 and 4.8. The protein was stable between pH 2.0 and 5.0 and inactivated at temperatures above 40 degrees C. The killer protein was chromosomally encoded. Mannan, but not beta-glucan or laminarin, prevented sensitive yeast cells from being killed by the killer protein, suggesting that mannan may bind to the killer protein. Identification and characterization of a killer strain of S. occidentalis may help reduce the risk of contamination by undesirable yeast strains during commercial fermentations.  相似文献   

13.
SMKT, a killer toxin produced by the halotolerant yeast Pichia farinosa KK1, consists of alpha and beta subunits with folding remarkably similar to that of the fungal killer toxin KP4, a Ca2+ channel inhibitor. The budding yeast Saccharomyces cerevisiae is sensitive to SMKT. To understand the killing mechanism of SMKT, we isolated SMKT-resistant mutants of S. cerevisiae and characterized them. Five spf mutants (sensitivity to the P. farinosa killer toxin) fell into a single genetic complementation group, designated spf1. The SPF1 gene was cloned by complementation of the mutant phenotype. The SPF1 gene encodes a putative P-type ATPase of 1215 amino acid residues that contains 12 membrane-spanning regions. Gene disruption revealed that the SPF1 gene is not essential for viability but is required for the sensitivity to SMKT. The spf1 disruptant showed some phenotypes characteristic of glycosylation-defective mutants and secreted underglycosylated invertase. Fluorescence-activated cell-sorting analysis and indirect immunofluorescence microscopy showed that SMKT interacts with the cell surface of the resistant cells but not with that of sensitive cells, suggesting a novel resistance mechanism for this toxin. The glycosylation-defective phenotype and possible killer-resistant mechanisms are discussed in comparison with the Golgi Ca2+ pump Pmr1p.  相似文献   

14.
Saccharomyces cerevisiae structural cell wall mannoprotein   总被引:9,自引:0,他引:9  
J Frevert  C E Ballou 《Biochemistry》1985,24(3):753-759
A novel mannoprotein fraction with an average molecular weight of 180 000 has been isolated from Saccharomyces cerevisiae mnn9 mutant cell wall that was solubilized by beta-glucanase digestion. The same material could be extracted from purified wall fragments with 1% sodium dodecyl sulfate. The protein component, 12% by weight, is rich in proline, whereas the carbohydrate, mainly mannose, is about evenly distributed between asparagine and hydroxyamino acids. Endoglucosaminidase H digestion of the isolated mannoprotein reduced its average molecular weight to 150 000, but the mannoprotein, while still embedded in the cell wall, was inaccessible to the enzyme. Biosynthesis and translocation of the mannoprotein were investigated by following incorporation of [3H]proline into this fraction. In the presence of tunicamycin, both mnn9 and wild-type X2180 cells made a mannoprotein fraction with an average molecular weight of 140 000, whereas in the absence of the glycosylation inhibitor, the mnn9 mutant made material with a molecular weight of 180 000 and the mannoprotein made by wild-type cells was too large to penetrate the polyacrylamide gel. Although the cell wall mannoprotein was resistant to heat and proteolytic enzymes, attempts to isolate the carbohydrate-free component failed to yield any characteristic peptide material.  相似文献   

15.
Kre1p, the plasma membrane receptor for the yeast K1 viral toxin   总被引:6,自引:0,他引:6  
Breinig F  Tipper DJ  Schmitt MJ 《Cell》2002,108(3):395-405
Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.  相似文献   

16.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

17.
The cell wall of Candida albicans is central to the yeasts ability to withstand osmotic challenge, to adhere to host cells, to interact with the innate immune system and ultimately to the virulence of the organism. Little is known about the effect of culture conditions on the cell wall structure and composition of C. albicans. We examined the effect of different media and culture temperatures on the molecular weight (Mw), polymer distribution and composition of cell wall mannan and mannoprotein complex. Strain SC5314 was inoculated from frozen stock onto yeast peptone dextrose (YPD), blood or 5% serum agar media at 30 or 37°C prior to mannan/mannoprotein extraction. Cultivation of the yeast in blood or serum at physiologic temperature resulted in an additive effect on Mw, however, cultivation media had the greatest impact on Mw. Mannan from a yeast grown on blood or serum at 30°C showed a 38.9 and 28.6% increase in Mw, when compared with mannan from YPD-grown yeast at 30°C. Mannan from the yeast pregrown on blood or serum at 37°C showed increased Mw (8.8 and 26.3%) when compared with YPD mannan at 37°C. The changes in Mw over the entire polymer distribution were due to an increase in the amount of mannoprotein (23.8-100%) and a decrease in cell wall mannan (5.7-17.3%). We conclude that C. albicans alters the composition of its cell wall, and thus its phenotype, in response to cultivation in blood, serum and/or physiologic temperature by increasing the amount of the mannoprotein and decreasing the amount of the mannan in the cell wall.  相似文献   

18.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

19.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

20.
Microglial cells, like macrophages, are very sensitive to ricin, a galactose-specific toxic lectin belonging to the family of ribosome-inactivating proteins. This toxin can be taken up by most cells through the binding of its B chain to galactose-containing molecules on the cell membrane. In macrophagic cell types it can be internalised also by mannose receptors which are present on the surface of these cells. Endocytosis of the toxin by either pathway was evaluated by ricin toxicity to primary cultures of rat microglial cells and to a microglial N11 cell line in the presence or absence of lactose and mannan, which compete for the endocytosis via the ricin lectin chain or cellular mannose receptors, respectively. Results were compared with those obtained in cultures of mouse macrophages, human monocytes, and a monocytic JM cell line. All cultures were protected from ricin toxicity more by lactose than by mannan, indicating that ricin endocytosis via its lectin B chain is prevalent over that mediated by cellular mannose receptors. However, a partial protection by mannan was observed in all cases but not-stimulated N11 cells, either in the form of direct protection or of significant additional protection over that afforded by lactose. Mannose receptor expression by N11 cells was negative before, and positive after, treatment with endotoxin, as assessed by the specific binding of 125I-mannose-bovine serum albumin. Moreover, a partial protection from ricin toxicity by mannan was induced in the N11 microglial line after stimulation, consistently with an inducible expression of the mannose receptor by activated cells switched towards a microglial phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号