共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional gene arrays (FGAs) have been considered as a specific, sensitive, quantitative, and high throughput metagenomic tool to detect, monitor and characterize microbial communities. Especially GeoChips, the most comprehensive FGAs have been applied to analyze the functional diversity, composition, structure, and metabolic potential or activity of a variety of microbial communities from different habitats, such as aquatic ecosystems, soils, contaminated sites, extreme environments, and bioreactors. FGAs are able to address fundamental questions related to global change, bioremediation, land use, human health, and ecological theories, and link the microbial community structure to environmental properties and ecosystem functioning. This review focuses on applications of FGA technology for profiling microbial communities, including target preparation, hybridization and data processing, and data analysis. We also discuss challenges and future directions of FGA applications. 相似文献
2.
To quantify target genes in biological samples using DNA microarrays, we employed reference DNA to normalize variations in spot size and hybridization. This method was tested using nitrate reductase (nirS), naphthalene dioxygenase (nahA), and Escherichia coli O157 O-antigen biosynthesis genes as model genes and lambda DNA as the reference DNA. We observed a good linearity between the log signal ratio and log DNA concentration ratio at DNA concentrations above the method's detection limit, which was approximately 10 pg. This approach for designing quantitative microarrays and the inferred equation from this study provide a simple and convenient way to estimate the target gene concentration from the hybridization signal ratio. 相似文献
3.
Rüdiger Benters Christof M. Niemeyer Denja Drutschmann Dietmar Blohm Dieter Whrle 《Nucleic acids research》2002,30(2):e10
The DNA microarray-based analysis of single nucleotide polymorphisms (SNPs) is important for the correlation of genetic variations and individual phenotypes, and for locating disease-causing genes. To facilitate the development of surfaces suitable for immobilization of oligonucleotides, we report here a novel method for the surface immobilization of DNA using pre-fabricated polyamidoamine (PAMAM) starburst dendrimers as mediator moieties. Dendrimers containing 64 primary amino groups in their outer sphere are covalently attached to silylated glass supports and, subsequently, the dendritic macromolecules are modified with glutaric anhydride and activated with N-hydroxysuccinimide. As a result of the dendritic PAMAM linker system the surfaces reveal both a very high immobilization efficiency for amino-modified DNA-oligomers, and also a remarkable high stability during repeated regeneration and re-using cycles. The performance of dendrimer-based DNA microarrays in the discrimination of SNPs is demonstrated. 相似文献
4.
A DNA microarray to monitor the expression of bacterial metabolic genes within mixed microbial communities was designed and tested. Total RNA was extracted from pure and mixed cultures containing the 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Ralstonia eutropha JMP134, and the inducing agent 2,4-D. Induction of the 2,4-D catabolic genes present in this organism was readily detected 4, 7, and 24 h after the addition of 2,4-D. This strain was diluted into a constructed mixed microbial community derived from a laboratory scale sequencing batch reactor. Induction of two of five 2,4-D catabolic genes (tfdA and tfdC) from populations of JMP134 as low as 10(5) cells/ml was clearly detected against a background of 10(8) cells/ml. Induction of two others (tfdB and tfdE) was detected from populations of 10(6) cells/ml in the same background; however, the last gene, tfdF, showed no significant induction due to high variability. In another experiment, the induction of resin acid degradative genes was statistically detectable in sludge-fed pulp mill effluent exposed to dehydroabietic acid in batch experiments. We conclude that microarrays will be useful tools for the detection of bacterial gene expression in wastewaters and other complex systems. 相似文献
5.
6.
Oligonucleotide microarrays in microbial diagnostics 总被引:7,自引:0,他引:7
Oligonucleotide microarrays offer a fast, high-throughput alternative for the parallel detection of microbes from virtually any sample. The application potential spreads across most sectors of life sciences, including environmental microbiology and microbial ecology; human, veterinary, food and plant diagnostics; water quality control; industrial microbiology, and so on. The past two years have witnessed a rapid increase of research in this field. Many alternative techniques were developed and validated as seen in 'proof-of-concept' articles. Publications reporting on the application of oligonucleotide microarray technology for microbial diagnostics in microbiology driven projects have just started to appear. Current and future technical and bioinformatics developments will inevitably improve the potential of this technology further. 相似文献
7.
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. 相似文献
8.
9.
Sessitsch A Hackl E Wenzl P Kilian A Kostic T Stralis-Pavese N Sandjong BT Bodrossy L 《The New phytologist》2006,171(4):719-736
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities. 相似文献
10.
11.
12.
Aitman TJ 《BMJ (Clinical research ed.)》2001,323(7313):611-615
13.
W S Ramsey E D Nowlan L B Simpson R A Messing M M Takeguchi 《Applied microbiology》1980,39(2):372-375
Media containing the fluorogenic compound 8-anilino-1-naphthalene sulfonic acid may be used to discriminate between gram-positive and gram-negative bacteria and to differentiate between various species of bacteria. Fluorescent light emitted from colonies of gram-negative bacteria on 8-anilino-1-naphthalene sulfonic acid-containing agar was visually more intense than that on gram-positive bacteria. The emitted light from the gram-negative bacteria differed in wave-lengths from that of light emitted by colonies of gram-positive bacteria. The fluorescent intensity of colonies on complete 8-anilino-1-napthalene sulfonic acid agar supplemented with 1% of single substrates varied depending on the bacterial species, thus allowing the development of profiles used to identify 12 different species. 相似文献
14.
Microarrays are powerful, highly parallel assays that are transforming microbiological diagnostics and research. The adaptation of microarray-based resequencing technology for microbial detection and characterization resulted in the development of a number assays that have unique advantages over other existing technologies. This technological platform seems to be especially useful for sensitive and high-resolution multiplexed diagnostics for clinical syndromes with similar symptoms, screening environmental samples for biothreat agents, as well as genotyping and whole-genome analysis of single pathogens. 相似文献
15.
Charles Kooperberg Thomas G Fazzio Jeffrey J Delrow Toshio Tsukiyama 《Journal of computational biology》2002,9(1):55-66
Most microarray scanning software for glass spotted arrays provides estimates for the intensity for the "foreground" and "background" of two channels for every spot. The common approach in further analyzing such data is to first subtract the background from the foreground for each channel and to use the ratio of these two results as the estimate of the expression level. The resulting ratios are, after possible averaging over replicates, the usual inputs for further data analysis, such as clustering. If, with this background correction procedure, the foreground intensity was smaller than the background intensity for a channel, that spot (on that array) yields no usable data. In this paper it is argued that this preprocessing leads to estimates of the expression that have a much larger variance than needed when the expression levels are low. 相似文献
16.
17.
DNA microarrays in clinical cancer research 总被引:4,自引:0,他引:4
The recent sequencing of the human genome, coupled with advances in biotechnology, is enabling the comprehensive molecular "profiling" of human tissues. In particular, DNA microarrays are powerful tools for obtaining global views of human tumor gene expression. Complex information from tumor "expression profiling" studies can, in turn, be used to create novel molecular cancer diagnostics. We discuss the utility of DNA microarray-based tumor profiling in clinical cancer research, highlight some important recent studies, and identify future avenues of research in this evolving field. 相似文献
18.
19.
20.
Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure. 相似文献