共查询到20条相似文献,搜索用时 0 毫秒
1.
Glaser M Karlsen H Solbakken M Arukwe J Brady F Luthra SK Cuthbertson A 《Bioconjugate chemistry》2004,15(6):1447-1453
[(18)F]Fluorothiols are a new generation of peptide labeling reagents. This article describes the preparation of suitable methanesulfonyl precursors and their use in no-carrier-added radiosyntheses of (18)F-fluorothiols. The preparations of (3-[(18)F]fluoropropylsulfanyl)triphenylmethane, (2-[2-[2-(2-[(18)F]fluoroethoxy)ethoxy]ethoxy]ethylsulfanyl)triphenylmethane, and 4-[(18)F]fluoromethyl-N-[2-triphenylmethanesulfanyl)ethyl]benzamide starting from the corresponding methanesulfonyl precursors were investigated. Following the removal of the triphenylmethane protecting group, the (18)F-fluorothiols were reacted with the N-terminal chloroacetylated model peptide ClCH(2)C(O)-LysGlyPheGlyLys. The corresponding radiochemical yields of (18)F-labeled isolated model peptide, decay-corrected to (18)F fluoride, were 10%, 32%, and 1%, respectively. These results indicate a considerable potential of (18)F-fluorothiols for the chemoselective labeling of peptides as tracers for positron emission tomography (PET). 相似文献
2.
K J Friston C D Frith P F Liddle R S Frackowiak 《Proceedings. Biological sciences / The Royal Society》1991,244(1310):101-106
By using positron emission tomography (PET) we examined the biological validity of a network model describing changes in cerebral activity associated with intrinsic and extrinsic word generation. The production of words not specified by an extrinsic stimulus constitutes willed or intrinsic generation. Perceiving a heard word is an example of extrinsic generation. The model incorporates three neuronal systems: a pool that stores word representations in a distributed fashion, an afferent system conveying sensory input to the pool and a modulating system that alters the responsivity of neurons in the pool. Simulations based on the model suggested that intrinsic generation would be associated with low activity in the pool, consequent on reduced modulation, and extrinsic generation with high activity. We measured cerebral activity with PET during intrinsic (verbal fluency) and extrinsic (responding to heard words) word generation and found this pattern of changes in the left superior temporal region. We were able to designate this region the site of the distributed word store and implicate the left dorsolateral prefrontal cortex (DLPFC) as the source of modulation. The relation between the superior temporal gyrus and DLPFC was shown by examining the correlation between the two regions in terms of cerebral activity. We conclude that the left DLPFC is responsible for modulating the responsivity of a neural system in the superior temporal gyrus and is the probable mediator of changes in attentional and intentional states that underlies the intrinsic generation of words. 相似文献
3.
Four carbon-11-labeled camptothecin derivatives, 9-[11C]methoxy-20(S)-camptothecin ([11C]5), 10-[11C]methoxy-20(S)-camptothecin ([11C]7), 9-nitro-10-[11C]methoxy-20(S)-camptothecin ([11C]9), and 9-[([11C]trimethylamino)methyl]-10-hydroxy-20(S)-camptothecin ([11C]11), have been synthesized as potential positron emission tomography tracers for imaging of topoisomerase I in cancers. 相似文献
4.
Géraldine Pottier Nicholas Bernards Frédéric Dollé Raphael Boisgard 《Arthritis research & therapy》2014,16(2):1-10
Introduction
Rheumatoid arthritis (RA) is a chronic disease, affecting 0.5 to 1% of adults in industrialized countries, in which systemic inflammation and synovitis drive joint destruction. [18F]DPA-714 is a specific tracer of the 18 kDa translocator protein (TSPO), which is overexpressed on activated macrophages, and proposed as a biomarker of neuroinflammation. Today, diagnosis of patients with early inflammatory arthritis is limited by poor sensitivity and specificity. The present study aims to investigate the potential of [18F]DPA-714 to monitor in vivo inflammatory processes at a preclinical stage via positron emission tomography (PET).Methods
RA was induced in Dark Agouti rats by subcutaneous injection of inactivated Mycobacterium tuberculosis. Development of arthritis clinical signs was investigated daily and the severity of the disease evaluated. Animals were imaged at the peak of inflammation using [18F]DPA-714 and a small-animal PET-CT tomograph.Results
The first clinical signs appeared at 10 days post-injection, with a peak of inflammation at 20 days. At this time, PET-analyses showed a clear uptake of [18F]DPA-714 in swollen ankles, with mean values of 0.52 ± 0.18% injected dose (ID/cc) for treated (n = 11) and 0.19 ± 0.09 for non-treated (n = 6) rats. A good correlation between [18F]DPA-714’s uptake and swelling was also found. Immunohistochemistry showed an enhanced TSPO expression in hind paws, mainly co-localized with the macrophages specific antigen CD68 expressing cells.Conclusion
These preliminary results demonstrate that the TSPO 18kDa specific radioligand [18F]DPA-714 is adapted for the study and follow-up of inflammation linked to RA in our experimental model, suggesting also a strong potential for clinical imaging of peripheral inflammation. 相似文献5.
Minoru Kameda Makoto Ando Chisato Nakama Kensuke Kobayashi Hiroshi Kawamoto Sayaka Ito Tomoki Suzuki Takeshi Tani Satoshi Ozaki Shigeru Tokita Nagaaki Sato 《Bioorganic & medicinal chemistry letters》2009,19(17):5124-5127
A series of 2,4-diaminopyridine derivatives was synthesized and evaluated as potential candidates for neuropeptide Y (NPY) Y1 receptor positron emission tomography (PET) tracers. Derivatives bearing substitutions allowing reliable access to radiolabeling were designed, focusing on Y1 binding affinity and lipophilicity. The advanced derivatives 2n and 2o were identified as promising PET tracer candidates. 相似文献
6.
Well-known as an important regulator of lipid metabolism and adipocyte differentiation, the peroxisome proliferator-activated receptor gamma (PPARgamma) also has potential use as a target for antitumor therapy in certain cancers. To develop agents for radionuclide imaging PPARgamma in vivo, we synthesized fluorine, bromine, and iodine-substituted analogs (1-3) of a high-affinity benzophenone-tyrosine PPARgamma ligand; all three analogs retain very high affinity for the PPARgamma receptor. In preparation for the synthesis of these PPARgamma ligands in radiolabeled form, we have synthesized two types of precursors: (a) an aryltributylstannane (9), from which the bromine and iodine-substituted analogs (2 and 3) can readily be prepared by electrophilic destannylation, and (b) three diaryliodonium tosylate derivatives (12a-c), precursors for nucleophilic aromatic fluorination using fluoride ion. Conditions were developed whereby the thiophenyliodonium tosylate (12c) underwent nucleophilic aromatic substitution with fluoride ion, efficiently and in short reaction times, to produce the desired fluorine-substituted target compound 1. These reactions laid the groundwork for producing these three PPARgamma ligands in radiolabeled form; in addition, our use of diaryliodonium ion precursors for aromatic fluorination in this series provides an example that should encourage application of this approach for radiofluorination of more complicated radiopharmaceuticals. 相似文献
7.
In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET) 总被引:5,自引:0,他引:5
Kornblum HI Araujo DM Annala AJ Tatsukawa KJ Phelps ME Cherry SR 《Nature biotechnology》2000,18(6):655-660
The study of neural repair and neuroplasticity in rodents would be enhanced by the ability to assess neuronal function in vivo. Positron emission tomography (PET) is used to study brain plasticity in humans, but the limited resolution and sensitivity of conventional scanners have generally precluded the use of PET to study neuroplasticity in rodents. We now demonstrate that microPET, a PET scanner developed for use with small animals, can be used to assess metabolic activity in different regions of the conscious rodent brain using [18F]fluorodeoxyglucose (FDG) as the tracer, and to monitor changes in neuronal activity. Limbic seizures result in dramatically elevated metabolic activity in the hippocampus, whereas vibrissal stimulation results in more modest increases in FDG uptake in the contralateral neocortex. We also show that microPET can be used to study lesion-induced plasticity of the brain. Cerebral hemidecortication resulted in diminished relative glucose metabolism in the neostriatum and thalamus ipsilateral to the lesion, with subsequent, significant recovery of metabolic function. These studies demonstrate that microPET can be used for serial assessment of metabolic function of individual, awake rats with a minimal degree of invasiveness, and therefore, has the potential for use in the study of brain disorders and repair. 相似文献
8.
《International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology》1992,19(4):461-480
We have prepared eight fluorine-substituted corticosteroids representing ligands selective for Type I and Type II corticosteroid receptor subtypes as potential imaging agents for corticosteroid receptor-containing regions of the brain. Receptor binding affinity assays show that fluorine substitution for hydroxyl or hydrogen in these steroids generally results in some reduction in affinity, with the result that the absolute affinity of these fluorine-substituted ligands for receptor is less than that typical for steroid hormones that show receptor-based, target selective uptake in vivo. Five of these compounds were prepared in fluorine-18 labeled form by a simple sulfonate ester displacement reaction, and their tissue distribution was studied in the adrenalectomized rat. There is no selective accumulation nor selective retention of the Type I selective corticosteroids (18F-RU 26752, 21-[18F]fluoroprogesterone, 21-[18F]fluoro-11β-hydroxyprogesterone) in either the brain, or other target tissues (pituitary, kidney, liver). The Type II selective corticosteroids (18F-RU 28362, 18F-triamcinolone acetonide) show uptake into the hippocampus which can be partially blocked by a competing ligand; in target tissues outside the brain, the blocking is more complete. All of the 18F-labeled compounds show considerable defluorination, evident as high bone activity levels. These results, coupled with earlier findings in the literature, suggest that radiolabeled corticosteroid receptor ligands with both greater metabolic stability and higher receptor binding affinity and selectivity are needed for imaging corticosteroid receptors in the hippocampus. 相似文献
9.
Human memory is not a unitary function; it consists of multiple memory systems, with different characteristics and specialisations that are implemented in the brain. The cognitive neuroscience of human memory tries to comprehend how we encode, store, and retrieve memory items within and across those systems. The emergence of functional neuroimaging techniques offered the unprecedented opportunity to directly observe the brain regions engaged in memory functions. Brain imaging techniques can roughly be divided into those measuring the electric or magnetic fields generated by neuronal activity (EEG, magnetencephalography [MEG]) and those measuring the haemodynamic or metabolic sequelae of neuronal activity (positron emission tomography [PET], functional magnetic resonance imaging [fMRI]). Out of these techniques, the following two will be discussed in detail: fMRI and PET. Although functional neuroimaging is able to acquire images of the brain engaged in consolidating or retrieving memories, these processes are not clearly visible in the data. Statistical techniques are needed to reduce the complexity of the data and to extract the processes of interest. This article outlines the experimental and analytical procedures of neuroimaging studies with PET and fMRI. We will use a PET-study on episodic memory in human volunteers to illustrate design, analysis, and interpretation of functional imaging studies on memory. 相似文献
10.
Radu CG Shu CJ Nair-Gill E Shelly SM Barrio JR Satyamurthy N Phelps ME Witte ON 《Nature medicine》2008,14(7):783-788
Monitoring immune function with molecular imaging could have a considerable impact on the diagnosis and treatment evaluation of immunological disorders and therapeutic immune responses. Positron emission tomography (PET) is a molecular imaging modality with applications in cancer and other diseases. PET studies of immune function have been limited by a lack of specialized probes. We identified [(18)F]FAC (1-(2'-deoxy-2'-[(18)F]fluoroarabinofuranosyl) cytosine) by differential screening as a new PET probe for the deoxyribonucleotide salvage pathway. [(18)F]FAC enabled visualization of lymphoid organs and was sensitive to localized immune activation in a mouse model of antitumor immunity. [(18)F]FAC microPET also detected early changes in lymphoid mass in systemic autoimmunity and allowed evaluation of immunosuppressive therapy. These data support the use of [(18)F]FAC PET for immune monitoring and suggest a wide range of clinical applications in immune disorders and in certain types of cancer. 相似文献
11.
《Bioorganic & medicinal chemistry》2014,22(19):5168-5181
Sphingosine-1-phosphate (S1P) receptors play major roles in cardiovascular, immunological and neurological diseases. The recent approval of the sphingolipid drug Fingolimod (Gilenya®), a sphingosine-1-phosphate agonist for relapsing multiple sclerosis, in 2010 exemplifies the potential for targeting sphingolipids for the treatment of human disorders. Moreover, non-invasive in vivo imaging of S1P receptors that are not available till now would contribute to the understanding of their role in specific pathologies and is therefore of preclinical interest. Based on fluorinated analogues of the S1P1 receptor antagonist W146 showing practically equal in vitro potency as the lead structure, the first S1P receptor antagonist [18F]-radiotracer has been synthesized and tested for in vivo imaging of the S1P1 receptor using positron emission tomography (PET). Though the tracer is serum stable, initial in vivo images show fast metabolism and subsequent accumulation of free [18F]fluoride in the bones. 相似文献
12.
Peng X Zhang A Kula NS Baldessarini RJ Neumeyer JL 《Bioorganic & medicinal chemistry letters》2004,14(22):5635-5639
A series of novel fluoroalkyl-containing tropane derivatives (6-8, 10-14, 17, and 18) were synthesized from cocaine. Novel compounds were evaluated for affinity and selectivity in competitive radioligand binding assays selective for cerebral serotonin (5-HT), dopamine (DA), and norepinephrine (NE) transporters (SERT, DAT, and NET). The nortropane-fluoroalkyl esters (7, 10, 11) were most potent for SERT (K(i): 0.18, 0.24, and 0.30 nM, respectively). Tosylate esters 17 and 18, synthesized as precursors for [(18)F]-labeled, Positron Emission Tomography (PET) imaging agents, also showed high affinity for DAT. 相似文献
13.
《Bioorganic & medicinal chemistry》2014,22(8):2563-2570
Positron-emission tomography (PET) can be used to visualize active stage cancer. Fluorine-18 ([18F])-labeled 2-([18F])2-deoxy-2-fluoroglucose (([18F])-FDG), which accumulates in glucose-dependent tissues, is a good cancer-targeting tracer. However, ([18F])-FDG is obscured in glucose-dependent normal tissues. In this study, we assessed the cancer-selective accumulation of zinc-labeled glycoconjugated 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (ZnGlc1–4), both in vitro and in vivo. Experiments using both normal and cancer cells confirmed the relationship between cancer cell-selective accumulation and the substitution numbers and orientations of glycoconjugated porphyrins. ZnGlctrans-2 accumulated at greater levels in cancer cells compared with other glycoconjugated porphyrins. PET imaging showed that ZnGlctrans-2 accumulated in tumor. 相似文献
14.
Limin Wang Wenchao Qu Brian Lieberman Karl Ploessl Hank F. Kung 《Bioorganic & medicinal chemistry letters》2010,20(12):3482-3485
Three new 18F labeled fluoroalkyl tyrosine derivatives, O-(2-[18F]fluoroethyl)-α-methyltyrosine (FEMT, [18F]2), O-(2-[18F]fluoroethyl)-2-l-azatyrosine (FEAT, [18F]3), O-(2-[18F]fluoroethyl)-l-tyrosineamide (FETA, [18F]4) have been synthesized and radiofluorinated with 5–34% decay-corrected yield. In vitro studies were carried out in U-138 MG human glioblastoma. Cellular uptake of new tracers was compared to clinically utilized imaging agent O-(2-[18F]fluoroethyl)-l-tyrosine (FET, [18F]1). The uptake of tracers followed the order of FET ([18F]1) > FEAT([18F]3) > FEMT ([18F]2) ≈ FETA ([18F]4). 相似文献
15.
AimsThere is an urgent need for positron emission tomography (PET) imaging of the nicotinic acetylcholine receptors (nAChR) to study the role of the nicotinic system in Alzheimer's and Parkinson's diseases, schizophrenia, drug dependence and many other disorders. Greater understanding of the underlying mechanisms of the nicotinic system could direct the development of medications to treat these disorders. Central nAChRs also contribute to a variety of brain functions, including cognition, behavior and memory.Main methodsCurrently, only two radiotracers, (S)-3-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (2-[18F]FA) and (S)-5-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (6-[18F]FA), are available for studying nAChRs in human brain using PET. However, the “slow” brain kinetics of these radiotracers hamper mathematical modeling and reliable measurement of kinetic parameters since it takes 4–7 h of PET scanning for the tracers to reach steady state. The imaging drawbacks of the presently available nAChR radioligands have initiated the development of radioligands with faster brain kinetics by several research groups.Key findingsThis minireview attempts to survey the important achievements of several research groups in the discovery of PET nicotinic radioligands reached recently. Specifically, this article reviews papers published from 2006 through 2008 describing the development of fifteen new nAChR 11C-and 18F-ligands that show improved imaging properties over 2-[18F]FA.SignificanceThe continuous efforts of radiomedicinal chemists led to the development of several interesting PET radioligands for imaging of nAChR including [18F]AZAN, a potentially superior alternative to 2-[18F]FA. 相似文献
16.
《Bioorganic & medicinal chemistry letters》2020,30(4):126915
Recently, we selected a novel anti-hPD-L1-specific HCAb named Nb6 with high affinity (EC50 = 0.65 ng/mL) for potential hPD-L1 targeted non-invasive PET imaging. In this research, Nb6 was conjugated with the bifunctional chelator NCS-Bz-NOTA ((2-[(4-Isothiocyanophenyl) methyl]-1,4,7-triazacy-clononane-1,4,7-triacetic acid)) and further labeled with radio-nuclide 64Cu. 64Cu-NOTA-Nb6 was prepared with over 95% labeling yield, over 99% radiochemical purity and 14–16 GBq/μmol specific activity after PD-10 column purification. It shows good stability in 0.01 M PBS and 5% HSA solutions. 64Cu-NOTA-Nb6 has a high binding affinity to 3.60 nM which was tested by human lung adenocarcinoma A549 cell lines. Tumor lesion can be clearly observed from 20 h to 38 h by Micro-PET equipment after 64Cu-NOTA-Nb6 administration. The study revealed that 64Cu-NOTA-Nb6 has good lesion detection ability, high ratios between tumor and non-tumor signal and can specifically target A549 xenografted tumor model. Taken together of good stability, high binding affinity, and tumor detection ability, 64Cu labeled Nb6 is a promising radio-tracer in diagnosing of hPD-L1 overexpression tumor, supposed to monitor PD-L1overexpression tumor progression and guide targeted therapy with PET molecular imaging. 相似文献
17.
Shetty D Jeong JM Ju CH Kim YJ Lee JY Lee YS Lee DS Chung JK Lee MC 《Bioorganic & medicinal chemistry》2010,18(21):7338-7347
(68)Ga PET imaging in clinical oncology represents a notable development because the availability of (68)Ga is not dependent on a cyclotron. Furthermore, labeled amino acid derivatives have been proven to be useful for the imaging many tumor types. In the present study, we synthesized β-aminoalanine, γ-aminohomoalanine, and lysine conjugates of macrocyclic bifunctional chelating agents, such as, NOTA (1a-c) and DOTA (2a-c). The compounds produced were found to be potential useful as (68)Ga-PET imaging agents. In particular, they showed high tumor uptakes in vitro and in vivo, and had high labeling yields and excellent stabilities. The co-ordination chemistry of NOTA-monoamide compound 1a was studied by multinuclear NMR. In vitro studies showed that the synthesized compounds were taken up by cancer cells more than controls ((68)Ga-NOTA and (68)Ga-DOTA). Furthermore, in vivo studies showed that they have high tumor to muscle and tumor to blood ratios, and small-animal PET imaging revealed high tumor uptakes as compared with other organs, and high bladder activities, indicating rapid renal excretion. These results might motivate the use of (68)Ga amino acid PET for tumor diagnosis. 相似文献
18.
The peroxisome proliferator-activated receptor gamma (PPARgamma) is an important regulator of lipid metabolism and the differentiation of pre-adipocytes. Thus, imaging PPARgamma in vivo using positron-emission tomography (PET) might be useful in assessing lipid metabolism disorders and identifying tumor cell differentiation. A fluorine-substituted PPARgamma ligand from tyrosine-benzophenone class, compound 1, has a very high affinity for PPARgamma receptor (Ki = 0.14 nM). To develop this compound as a PPARgamma PET imaging agent, we investigated synthetic routes suitable for its labeling with the short-lived PET radionuclide fluorine-18 (t1/2 = 110 min). To obtain the high specific activity material needed for receptor imaging with this isotope, reactions need to proceed efficiently, within a short time, starting from fluoride ion at the tracer level. The most promising approach involves introduction of fluorine into a suitable benzophenone precursor, followed by efficient coupling of this intermediate with the heterocyclic tyrosine component using a copper-catalyzed Ullmann-type condensation. 相似文献
19.
Lipophilic cations such as phosphonium salts penetrate the hydrophobic barriers of the plasma and mitochondrial membranes and accumulate in mitochondria in response to the negative inner-transmembrane potentials. Thus, as newly developed noninvasive imaging agents, [(18)F]-labeled phosphonium salts may serve as molecular "voltage sensor" probes to investigate the role of mitochondria, particularly in myocardial disease. The present study reports the radiosynthesis of (6-fluorohexyl)triphenylphosphonium salt (3) as a potential agent for myocardial imaging by using positron emission tomography (PET). The reference compound of (6-[(18)F]fluorohexyl)triphenylphosphonium salt ([(18)F]3) was synthesized with 74% yield via three-step nucleophilic substitution reactions. The reference compound was radiolabeled via two-step nucleophilic substitution reactions of no-carrier-added [(18)F]fluoride with the precursor hexane-1,6-diyl bis(4-methylbenzenesulfonate) in the presence of Kryptofix 2.2.2 and K(2)CO(3). The radiolabeled compound was synthesized with 15-20% yield. The radiochemical purity was >98% by analytical HPLC, and the specific activity was >6.10-6.47 TBq/μmol. The cellular uptake assay showed preferential uptake of [(18)F]3 in cardiomyocytes. The results of biodistribution and micro-PET imaging studies of [(18)F]3 in mice and rats showed preferential accumulation in the myocardium. The results suggest that this compound would be a promising candidate for myocardial imaging. 相似文献
20.
Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This "depth-of-interaction" (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling. 相似文献