首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in basic science pointed to a role for proteinases, through the activation of proteinase-activated receptors (PARs) in nociceptive mechanisms. Activation of PAR1, PAR2 and PAR4 either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Sub-inflammatory doses of PAR2 agonist still induced hyperalgesia and allodynia while PAR2 has been shown to be implicated in the generation of hyperalgesia in different inflammatory models. In contrast, sub-inflammatory doses of PAR1 increases nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as an analgesic agent. PARs are present and functional on sensory neurons, where they participate either directly or indirectly to the transmission and/or inhibition of nociceptive messages. Taken together, the results discussed in this review highlight proteinases as signaling molecules to sensory nerves. We need to consider proteinases and the receptors that are activated by proteinases as important potential targets for the development of analgesic drugs in the treatment of inflammatory pain.  相似文献   

2.
Protease-activated receptors (PARs) are widely expressed within the heart. They are activated by a myriad of proteases, including coagulation proteases. In vitro studies showed that activation of PAR-1 and PAR-2 on cardiomyocytes induced hypertrophy. In addition, PAR-1 stimulation on cardiac fibroblasts induced proliferation. Genetic and pharmacologic approaches have been used to investigate the role of the different PARs in cardiac ischemia/reperfusion (I/R) injury. In mice and rats, PAR-1 is reported to play a role in inflammation, infarct size, and remodeling after cardiac I/R injury. However, there are notable differences between the effect of a deficiency in PAR-1 and inhibition of PAR-1. For instance, inhibition of PAR-1 reduced infarct size whereas there was no effect of a deficiency of PAR-1. These differences maybe due to off-target effects of the inhibitor or PAR-4 compensation of PAR-1 deficiency. Similarly, a deficiency of PAR-2 was associated with reduced cardiac inflammation and improved heart function after I/R injury, whereas pharmacologic activation of PAR-2 was found to be protective due to increased vasodilatation. These differences maybe due to different signaling responses induced by an endogenous protease versus an exogenous agonist peptide. Surprisingly, PAR-4 deficiency resulted in increased cardiac injury and increased mortality after I/R injury. In contrast, a pharmacological study indicated that inhibition of PAR-4 was cardioprotective. It is possible that the major cellular target of the PAR-4 inhibitor is platelets, which have been shown to contribute to inflammation in the injured heart, whereas PAR-4 signaling in cardiomyocytes may be protective. These discrepant results between genetic and pharmacological approaches indicate that further studies are needed to determine the role of different PARs in the injured heart.  相似文献   

3.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

4.
5.
Protease-activated receptors (PARs) mediate cellular responses to a variety of extracellular proteases. The four known PARs constitute a subgroup of the family of seven-transmembrane domain G protein-coupled receptors and activate intracellular signalling pathways typical for this family of receptors. Activation of PARs involves proteolytic cleavage of the extracellular domain, resulting in formation of a new N terminus, which acts as a tethered ligand. PAR-1, -3, and -4 are relatively selective for activation by thrombin whereas PAR-2 is activated by a variety of proteases, including trypsin and tryptase. Recent studies in mice genetically incapable of expressing specific PARs have defined roles for PAR-1 in vascular development, and for PAR-3 and -4 in platelet activation, which plays a fundamental role in blood coagulation. PAR-1 has also been implicated in a variety of other biological processes including inflammation, and brain and muscle development. Responses mediated by PAR-2 include contraction of intestinal smooth muscle, epithelium-dependent smooth muscle relaxation in the airways and vasculature, and potentiation of inflammatory responses. The area of PAR research is rapidly expanding our understanding of how cells communicate and control biological functions, in turn increasing our knowledge of disease processes and providing potential targets for therapeutic intervention.  相似文献   

6.
Protease-activated receptors 1 and 4 (PAR1 and PAR4) mediate thrombin signaling in human platelets. Whether these receptors are redundant, interact, or serve only partially overlapping functions is unknown. We report that PAR1 and PAR4 signal with distinct tempos. In transfected fibroblasts, PAR4 triggered substantially more phosphoinositide hydrolysis per activated receptor than PAR1 and was shut off more slowly than PAR1. Shutoff and internalization of PAR1 depends upon phosphorylation of its carboxyl tail upon receptor activation. In contrast to PAR1, phosphorylation of PAR4 was undetectable, and activation-dependent internalization of PAR4 was much slower than that seen for PAR1. Mutation of potential phosphorylation sites in the carboxyl tail of PAR1 enhanced PAR1 signaling, whereas analogous mutations in PAR4 had no effect. Thus PAR4 signaling is shut off less rapidly than PAR1, probably due to differences in receptor phosphorylation. PAR1 and PAR4 also signaled with distinct tempos in platelets. PAR1 triggered a rapid and transient increase in intracellular calcium, whereas PAR4 triggered a more prolonged response. Together, the tempo of these responses accounted for that triggered by thrombin. Thus differences in the rates at which PAR1 and PAR4 are shut off allow thrombin to trigger intracellular signaling with distinct temporal characteristics.  相似文献   

7.
Protease-activated quantum dot probes   总被引:1,自引:0,他引:1  
We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker.  相似文献   

8.
In March 2011, researchers met for the second Batsheva Seminar on Integrative Perspectives on the Development of the Musculoskeletal System. This meeting was a unique opportunity for researchers working on muscle, connective tissue, tendons, ligaments and bone to discuss the development of the musculoskeleton, recognizing that it is an integrated, functional system. The talks and discussions at this meeting highlighted that interactions between the different tissue components are crucial for musculoskeletal morphogenesis.  相似文献   

9.
Paralysis and growth of the musculoskeletal system in the embryonic chick   总被引:3,自引:0,他引:3  
Avian embryos can be completely paralyzed by injection of neuromuscular-blocking agents. We used a single injection of decamethonium iodide to paralyze embryos at 7, 8, or 10 days of incubation and analyzed the growth of individual bones (clavicle, mandible, ulna, femur, tibia, humerus) and of individual muscles that act upon some of those bones (clavicular and sternal heads of m. pectoralis, and mm. biceps brachii, depressor mandibulae, pseudotemporalis, and adductor externus). Growth of the bones is not equally affected by paralysis. Only 27% of clavicular growth (by mass) but 77% of mandibular growth occurred in paralyzed embryos, whereas the four long bones exhibited 52-63% of their normal growth. Analysis of muscle weight, fiber length and physiological cross-sectional area (weight/fiber length) indicate that there was greater reduction of the muscles acting on the limbs than of those acting on the mandible, i.e., diminished growth of the skeleton is correlated with reduced muscular activity. Specific retardation of clavicular growth is due to fusion of sternal rudiments and collapse of the thorax, as well as virtual absence of the musculature that normally attaches to the clavicle. We discuss these results in the light of intrinsic and extrinsic factors governing growth of the embryonic skeleton. Paralysis reduces skeletal growth by reducing both the movements taking place in ovo, and the loads imposed on the bones by muscle contraction, changes that represent alterations in the mechanical environment of the skeleton.  相似文献   

10.
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.  相似文献   

11.
When antagonistic muscles co-contract, the impedance of musculoskeletal systems to applied loads is known to increase. In this paper a physiologically-based, higher-order, nonlinear antagonistic muscle-joint model is utilized to clarify the sources of impedance modulation during a variety of tasks, ranging from resisting transient loads to holding steady loads to making fast movements in unpredictable surroundings. It is shown that impedance modulation occurs automatically as a function of the specific operating ranges utilized during a given task by each of four different muscle-joint mechanical relations. The relative contribution of each relation depends on the type of task, with impedance during quasi-static conditions sensitive to muscle tension-length and sometimes joint parallel elastic properties and during dynamic tasks dominated by the series element and muscle force-velocity properties. Elimination of any of these causes a decrease in built-in biomechanical capabilities. These findings raise questions concerning past theories on stiffness-impedance modulation which appear to underestimate the role of inherent biomechanical properties.  相似文献   

12.
The effects of the pleiotropic serine protease thrombin on tumor cells are commonly thought to be mediated by the thrombin receptor protease-activated receptor 1 (PAR1). We demonstrate here that PAR1 activation has a role in experimental metastasis using the anti-PAR1 antibodies ATAP2 and WEDE15, which block PAR1 cleavage and activation. Thrombin also stimulates chemokinesis of human melanoma cells toward fibroblast conditioned media and soluble matrix proteins. Thrombin-enhanced migration is abolished by anti-PAR1 antibodies, demonstrating that PAR1 cleavage and activation are required. The PAR1-specific agonist peptide TFLLRNPNDK, however, does not stimulate migration, indicating that PAR1 activation is not sufficient. In contrast, a combination of TFLLRNPNDK and the PAR2 agonist peptide SLIGRL mimics the thrombin effect on migration, whereas PAR2 agonist alone has no effect. Agonist peptides for the thrombin receptors PAR3 and PAR4 used alone or with PAR1 agonist also have no effect. Similarly, activation of PAR1 and PAR2 also enhances chemokinesis of prostate cancer cells. Desensitization with PAR2 agonist abolishes thrombin-enhanced cell motility, demonstrating that thrombin acts through PAR2. PAR2 is cleaved by proteases with trypsin-like specificity but not by thrombin. Thrombin enhances migration in the presence of a cleavage-blocking anti-PAR2 antibody, suggesting that thrombin activates PAR2 indirectly and independent of receptor cleavage. Treatment of melanoma cells with trypsin or PAR2 agonist peptide enhances experimental metastasis. Together, these data confirm a role for PAR1 in migration and metastasis and demonstrate an unexpected role for PAR2 in thrombin-dependent tumor cell migration and in metastasis.  相似文献   

13.
Extracellular nucleotides achieve their role as cell-to-cell communicators by acting at cell surface transmembrane receptors—the P2 receptors. Before molecular cloning led to the isolation of any P2-receptor sequence, a small number of receptor types had been proposed on the basis of pharmacological evidence. The application of molecular biology to this field of receptor research has indicated that a great underestimation of the number of receptor subtypes and of their abundance had occurred. There are now known to be seven characterized P2Y (G protein linked) receptors and the same number again of P2X receptors of the transmitter-gated ion channel type. In this review, we discuss the properties of these cloned receptors, their distribution within the nervous system, and their methods of signal transduction.  相似文献   

14.
Recent data point to important roles for proteinases and their cognate proteinase-activated receptors (PARs) in the ontogeny and pathophysiology of the nervous system. PARs are a family of G-protein-coupled receptors that can affect neural cell proliferation, morphology and physiology. PARs also have important roles in neuroinflammatory and degenerative diseases such as human immunodeficiency virus-associated dementia, Alzheimer's disease and pain. These receptors might also influence the pathogenesis of stroke and multiple sclerosis, conditions in which the blood-brain barrier is disrupted. The diversity of effects of PARs on neural function and their widespread distribution in the nervous system make them attractive therapeutic targets for neurological disorders. Here, we review the roles of PARs in the central and peripheral nervous systems during health and disease, with a focus on neuroinflammatory and degenerative disorders.  相似文献   

15.
Gene therapy and tissue engineering in repair of the musculoskeletal system   总被引:6,自引:0,他引:6  
Historically, surgeons have sought and used different procedures in order to augment the repair of various skeletal tissues. Now, with the completion of the Human Genome Project, many researchers have turned to gene therapy as a means to aid various ailments. In the orthopedic field, many strides have been made toward using gene therapy and tissue engineering in a clinical setting. In this review, several studies are outlined in different areas that gene therapy has or will influence orthopedic surgery. Gene therapy and tissue engineering can aid in fracture healing and spinal fusions by inducing bone formation, ligamentous repairs by increasing the production of connective tissue fibers, intervertebral disc disease by creating potential replacements, and articular cartilage repairs by providing means to improve cartilage. As we continue to see great contributions, such as the few mentioned here, this field will continue to mature and develop.  相似文献   

16.
17.
In regenerating rat liver, an elevated protein kinase activity was detected which phosphorylated ribosomal protein S6 and histones. The properties of this enzyme were closely similar with those of protease-activated protein kinase C with Mr 45,000. During the study of the mechanism of proteolytic activation, type III protein kinase C (encoding alpha-sequence) was shown to be subjected to limited proteolysis by trypsin-like protease and converted to protein kinase M in ionic strength- and pH-dependent manner. This reaction was stimulated in the presence of Ca2+ and phospholipid under slightly higher ionic strength condition than physiological level (greater than 140 mM NaCl) and alkaline pH (7.5-8.0). These results suggest that activation of Na+/H+ exchanger in plasma membrane may trigger this type of proteolytic activation of protein kinase C. In addition to protein kinase M, another type of protease-activated kinase with Mr 80,000 was detected when limited proteolysis of protein kinase C was performed on inactive form of this enzyme (in the absence of either Ca2+ or phospholipid or both activators) under lower ionic strength condition. The molecular mass of this active enzyme was slightly smaller (approximately 200) than that of native protein kinase C. However, it is not clear at this time whether this small fragment was released from amino-terminal or carboxy-terminal domain to make protein kinase C partially active in the absence of Ca2+ and phospholipid. Although it has been proposed that proteolytic degradation of protein kinase C is involved in down regulation of this enzyme, the physiological significance of these two types of protease-activated forms of protein kinases in liver has remained obscure.  相似文献   

18.
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of geometry parameters from the measurement data is described. The results for one cadaver are presented as a typical example. Morphological structures are modelled as geometrical forms. Parameters describing this form are estimated from 3-D position coordinates of a large number of datapoints on the morphological structure, using a least-squares criterion. Muscle and ligament attachments are represented as a plane or as a (curved) line. Muscle paths are determined by a geometrical form of the bony contour around which the muscle is wrapped. Muscle architecture is determined by the distribution of muscle bundles over the attachment area, mapping the distribution of the origin to the insertion. Joint rotation centers are derived from articular surfaces. Hence, muscle moment arms can be calculated. The result of this study is a set of parameters for each cadaver, describing very precisely the geometry of the shoulder mechanism. This set allows positioning of muscle force vectors a posteriori, and recalculation of position coordinates and moment arms for any position of the shoulder.  相似文献   

19.
YKL-40 is a growth factor for chondrocytes and fibroblasts. The aim was to evaluate YKL-40 expression in the musculoskeletal system during early human development. We studied sections from 15 human embryos [weeks 5.5-8; 7- to 31-mm crown-rump length (CRL)] and 68 fetuses (weeks 9-14; 33- to 105-mm CRL) for YKL-40 protein expression by immunohistochemistry. YKL-40 mRNA expression was evaluated in two human embryos (days 41 and 51). Initially YKL-40 is expressed in all germ layers: ecto-, meso-, and endoderm. YKL-40 mRNA and protein expression are found in tissues of the ecto-, meso-, and endoderm, and YKL-40 protein expression is present during development of cartilage, bone, joints, and muscles. At the cellular level, YKL-40 protein expression is high in tissues characterized by rapid proliferation, marked differentiation, and undergoing morphogenetic changes. Examples of rapid cell proliferation include the chondrogenic inner layer of perichondrium and the osteogenic inner layer of periosteum. Differences in YKL-40 expression during differentiation are found in the chondrogenic and osteogenic cell lineages. The initial shaping of cartilage and bone models and joints is concomitant with a strong outline of YKL-40-positive cells. This indicates that YKL-40 is associated with cell proliferation, differentiation, and tissue morphogenesis during development of the human musculoskeletal system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号