首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The kinA (spoIIJ) locus contains a single gene which codes for a protein of 69,170 daltons showing strong homology to the transmitter kinases of two component regulatory systems. The purified kinase autophosphorylates in the presence of ATP and mediates the transfer of phosphate to the Spo0A and Spo0F sporulation regulatory proteins. Spo0F protein was a much better phosphoreceptor for this kinase than Spo0A protein in vitro. Mutants with deletion mutations in the kinA gene were delayed in their sporulation. They produced about a third as many spores as the wild type in 24 h, but after 72 h on solid medium, the level of spores approximated that found for the wild-type strain. Such mutations had no effect on the regulation of the abrB gene or on the timing of subtilisin expression and therefore did not impair the repression function of the Spo0A protein. Placement of the kinA locus on a multicopy vector suppressed the sporulation-defective phenotype of spo0B, spo0E, and spo0F mutations but not of spo0A mutations. The results suggest that the spo0B-, spo0E-, and spo0F-dependent pathway of activation (phosphorylation) of the Spo0A regulator may be by-passed through the kinA gene product if it is present at sufficiently high intracellular concentration. The results suggest that multiple kinases exist for the Spo0A protein.  相似文献   

2.
The phosphorylated form of the response regulator Spo0A (Spo0A~P) is required for the initiation of sporulation in Bacillus subtilis. Phosphate is transferred to Spo0A from at least four histidine kinases (KinA, KinB, KinC, and KinD) by a phosphotransfer pathway composed of Spo0F and Spo0B. Several mutations in spo0A allow initiation of sporulation in the absence of spo0F and spo0B, but the mechanisms by which these mutations allow bypass of spo0F and spo0B are not fully understood. We measured the ability of KinA, KinB, and KinC to activate sporulation of five spo0A mutants in the absence of Spo0F and Spo0B. We also determined the effect of Spo0E, a Spo0A~P-specific phosphatase, on sporulation of strains containing the spo0A mutations. Our results indicate that several of the mutations relax the specificity of Spo0A, allowing Spo0A to obtain phosphate from a broader group of phosphodonors. In the course of these experiments, we observed medium-dependent effects on the sporulation of different mutants. This led us to identify a small molecule, acetoin, that can stimulate sporulation of some spo0A mutants.  相似文献   

3.
4.
5.
6.
The mutation sof-1 suppresses the sporulation defect of mutations in either the spo0B, spo0E, or spo0F stage 0 sporulation genes. Through the use of integrative plasmids carrying the portion of the chromosome including the spo0A locus and flanking regions, the sof-1 mutation was localized near the spo0A locus. A plasmid carrying a fragment of DNA with sof genetic activity was constructed. Nucleic acid sequence analysis of this fragment revealed a single base change that resulted in a substitution of lysine for asparagine in the 12th codon of the spo0A gene. The results indicate that certain missense mutations in the spo0A gene bypass the necessity for the spo0B, spo0E, and spo0F gene products in sporulation. Several models for the interaction of these gene products may be imagined.  相似文献   

7.
Spontaneous rifampin-resistant mutants (9V Rifr) were isolated from a mutant strain of Bacillus subtilis, 9V, which has a spo0C mutation. Whereas 90% of the 9V Rifr double mutants maintained the Spo0C phenotype (Spo- Abs +/-), the remaining 10% had the Spo0A phenotype (Spo- Abs-). The latter mutants, termed 9V Rifr Spo- Abs-, were revealed to have other Spo0A characters, such as reduced transformability, higher sensitivity to phage phi 2, and reduced frequency of lysogenization by phage phi 105. The rif mutation of these 9V Rifr Spo- Abs- strains was mapped near the cysA locus. The phenotype of the Rifr transformants of strain 9V by deoxyribonucleic acid derived from these 9V Rifr Spo- Abs- strains was Spo0A, and that of the Rifr transformants of strain 168 was Spo+ Abs+. The ribonucleic acid polymerase of the 9V Rifr Spo- Abs- strains was shown to be resistant to rifampin.  相似文献   

8.
9.
10.
11.
A mutation in Bacillus subtilis spo0A codon 97 suppressed the sporulation defect caused by the spo0A9V mutation. The suppressor activity of the codon 97 mutation was evident only in the presence of a novel spo0H allele. Our results suggest that the spo0A gene product interacts with the sigma factor subunit of RNA polymerase.  相似文献   

12.
Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the alpha4beta5alpha5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the alpha4beta5alpha5 signalling surface in the receiver domain.  相似文献   

13.
An 8.0-kilobase chromosomal fragment of Bacillus subtilis which contained an intact spo0A gene was recloned onto temperate phage phi 105 from the rho 11dspo0A+-1 transducing phage. A specialized transducing phage, phi 105-dspo0A+-1, was constructed and used to transduce the spo0A12 mutant strain 1S9. A Spo+ transductant which was a single lysogen of the phi 105dspo0A+-1 transducing phage was isolated. From competent cells of this Spo+ transductant was isolated a Spo- (Spo0A) strain which was immune to phi 105. It was used to prepare a lysate of the phi 105dspo0A12 phage. Transduction of the spo0C9V recE4 strain with the phi 105dspo0A12 and phi 105dspo0A+-1 phages was carried out. The phi 105dspo0A+-1 phage gave rise to a large number of heat-resistant cells, but the phi 105dspo0A12 phage formed no heat-resistant cells. These results indicate that the spo0A12 and spo0C9V mutant genes do not complement each other in the ability to sporulate and that the spo0C9V mutation is located within the spo0A gene. Although the spo0C9V strain was completely asporogenous, the spo0C9V/spo0C9V diploid strain produced heat-resistant cells at a frequency of ca. 10(-3) in the sporulation medium. This result indicates that two copies of the spo0C9V mutant gene partially restore the ability of these cells to sporulate.  相似文献   

14.
15.
Previous observations concerning the ability of the Bacillus subtilis bacteriophages SP10 and PMB12 to suppress mutations in spo0J and to make wild-type sporulation catabolite resistant suggested that spo0J had a role in catabolite repression of sporulation. This suggestion was supported in the present report by the ability of the catabolite-resistant sporulation mutation crsF4 to suppress a Tn917 insertion mutation of the B. subtilis spo0J locus (spo0J::Tn917 omega HU261) in medium without glucose. Although crsF4 and SP10 made wild-type B. subtilis sporulation catabolite resistant, neither crsF4 nor SP10 caused a mutant with spo0J::Tn917 omega HU261 to sporulate in medium with glucose. Sequencing the spo0J locus revealed an open reading frame that was 179 codons in length. Disruption of the open reading frame resulted in a sporulation-negative (Spo-) phenotype that was similar to those of other spo0J mutations. Analysis of the deduced amino acid sequence of the spo0J locus indicated that the spo0J gene product contains an alpha-helix-turn-alpha-helix unit similar to the motif found in lambda Cro-like DNA-binding proteins.  相似文献   

16.
We have shown previously that Spo0AP-dependent sinIR operon expression was substantially down-regulated in abrB null mutant backgrounds. In this report, we show that loss of function mutations in abrB also cause phosphorelay gene expression to be down regulated. abrB null mutations caused diminished vegetative growth-associated sporulation and resulted in a significant reduction in sporulation frequencies at T24. These mutants, however, sporulated at wild-type levels at T48, indicating that sporulation timing was affected. The rvtA11 mutation in spo0A, a deletion mutation in spo0E, and a null mutation in hpr (scoC) rescued sporulation and Spo0AP-dependent gene expression in an abrB mutant background. These data indicate that AbrB and Spo0E may comprise a checkpoint system that regulates the progression of sporulation, allowing exploration of alternate cell states prior to the irrevocable commitment to sporulation.  相似文献   

17.
Two extragenic suppressor mutations, sur0B20 and sur0F1, which restore the sporulation of spo0B or spo0F mutants of Bacillus subtilis to the wild-type level, were obtained. These suppressor mutations were located in the spo0A gene. Their location is close to that of the sof-1 mutation, which suppresses spo0B, spo0E and spo0F mutations. However, spo0 strains bearing the sur0B20 mutation differed in several phenotypic characteristics from spo0 mutants bearing the sof-1 suppressor. Nucleotide sequence analysis revealed that the sur0B20 and sur0F1 mutations resulted in Glu14 to Val and Asn12 to Lys conversion, respectively, in the spo0A gene. This result indicates that sur0B20 is a new suppressor of spo0b and spo0F mutations, whereas sur0F1 is identical to sof-1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号