首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
2.
3.
The glandular trichomes (lupulin glands) of hop (Humulus lupulus) synthesize essential oils and terpenophenolic resins, including the bioactive prenylflavonoid xanthohumol. To dissect the biosynthetic processes occurring in lupulin glands, we sequenced 10,581 ESTs from four trichome-derived cDNA libraries. ESTs representing enzymes of terpenoid biosynthesis, including all of the steps of the methyl 4-erythritol phosphate pathway, were abundant in the EST data set, as were ESTs for the known type III polyketide synthases of bitter acid and xanthohumol biosynthesis. The xanthohumol biosynthetic pathway involves a key O-methylation step. Four S-adenosyl-l-methionine-dependent O-methyltransferases (OMTs) with similarity to known flavonoid-methylating enzymes were present in the EST data set. OMT1, which was the most highly expressed OMT based on EST abundance and RT-PCR analysis, performs the final reaction in xanthohumol biosynthesis by methylating desmethylxanthohumol to form xanthohumol. OMT2 accepted a broad range of substrates, including desmethylxanthohumol, but did not form xanthohumol. Mass spectrometry and proton nuclear magnetic resonance analysis showed it methylated xanthohumol to 4-O-methylxanthohumol, which is not known from hop. OMT3 was inactive with all substrates tested. The lupulin gland-specific EST data set expands the genomic resources for H. lupulus and provides further insight into the metabolic specialization of glandular trichomes.  相似文献   

4.
5.
Sesame (Sesamum indicum) is an important oilseed crop which produces seeds with 50% oil that have a distinct flavor and contains antioxidant lignans. Because sesame lignans are known to have antioxidant and health-protecting properties, metabolic pathways for lignans have been of interest in developing sesame seeds. As an initial approach to identify genes involved in accumulation of storage products and in the biosynthesis of antioxidant lignans, 3328 expressed sequence tags (ESTs) were obtained from a cDNA library of immature seeds 5-25 days old. ESTs were clustered and analyzed by the BLASTX or FASTAX program against the GenBank NR and Arabidopsis proteome databases. To compare gene expression profiles during development of green and non-green seeds, a comparative analysis was carried out between developing sesame and Arabidopsis seed ESTs. Analyses of these two seed EST sets have helped to identify similar and different gene expression profiles during seed development, and to identify a large number of sesame seed-specific genes. In particular, we have identified EST candidates for genes possibly involved in biosynthesis of sesame lignans, sesamin and sesamolin, and also suggest a possible metabolic pathway for the generation of cofactors required for synthesis of storage lipid in non-green oilseeds. Seed-specific expression of several candidate genes has been confirmed by northern blot analysis.  相似文献   

6.
7.
8.
In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.  相似文献   

9.
10.
11.
12.
The Madagascar periwinkle (Catharanthus roseus) produces the well-known and remarkably complex anti-cancer dimeric alkaloids vinblastine and vincristine that are derived from the coupling of vindoline and catharanthine monomers. This study describes the novel application of a carborundum abrasion (CA) technique for large-scale isolation of leaf epidermis-enriched proteins in order to purify to apparent homogeneity 16-hydroxytabersonine-16-O-methyltransferase (16OMT), which catalyses the second of six steps in the conversion of tabersonine into vindoline, and to clone the gene. Functional expression and biochemical characterization of recombinant 16OMT demonstrated its very narrow substrate specificity and high affinity for 16-hydroxytabersonine. In addition to allowing the cloning of this gene, the CA technique clearly showed that 16OMT is predominantly expressed in Catharanthus leaf epidermis. The results provide compelling evidence that most of the pathway for vindoline biosynthesis, including the O-methylation of 16-hydroxytabersonine, occurs exclusively in the leaf epidermis, with subsequent steps occurring in other leaf cell types.  相似文献   

13.
Catharanthus roseus produces a wide range of secondary metabolites, some of which present high therapeutic values such as antitumoral monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, and the hypotensive MIA, ajmalicine. We have recently shown that a complex multicellular organisation of the MIA biosynthetic pathway occurred in C. roseus aerial organs. In particular, the final steps of both the secoiridoid–monoterpene and indole pathways specifically occurred in the epidermis of leaves and petals. Chorismate is the common precursor of indole and phenylpropanoid pathways. In an attempt to better map the spatio-temporal organisation of diverse secondary metabolisms in Catharanthus roseus aerial organs, we studied the expression pattern of genes encoding enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase [PAL, E.C. 4.3.1.5], cinnamate 4-hydroxylase [C4H, E.C. 1.14.13.11] and chalcone synthase [CHS, E.C. 2.3.1.74]). In situ hybridisation experiments revealed that CrPAL and CrC4H were specifically localised to lignifying xylem, whereas CrPAL, CrC4H and CrCHS were specifically expressed in the flavonoid-rich upper epidermis. Interestingly, these three genes were co-expressed in the epidermis (at least the upper, adaxial one) together with three MIA-related genes, indicating that single epidermis cells were capable of concomitantly producing a wide range of diverse secondary metabolites (e.g. flavonoïds, indoles, secoiridoid–monoterpenes and MIAs). These results, and data showing co-accumulation of flavonoids and alkaloids in single cells of C. roseus cell lines, indicated the spatio-temporal feasibility of putative common regulation mechanisms for the expression of these genes involved in at least four distinct secondary metabolisms.  相似文献   

14.
The medicinal plant Madagascar periwinkle, Catharanthus roseus (L.) G. Don, produces hundreds of biologically active monoterpene‐derived indole alkaloid (MIA) metabolites and is the sole source of the potent, expensive anti‐cancer compounds vinblastine and vincristine. Access to a genome sequence would enable insights into the biochemistry, control, and evolution of genes responsible for MIA biosynthesis. However, generation of a near‐complete, scaffolded genome is prohibitive to small research communities due to the expense, time, and expertise required. In this study, we generated a genome assembly for C. roseus that provides a near‐comprehensive representation of the genic space that revealed the genomic context of key points within the MIA biosynthetic pathway including physically clustered genes, tandem gene duplication, expression sub‐functionalization, and putative neo‐functionalization. The genome sequence also facilitated high resolution co‐expression analyses that revealed three distinct clusters of co‐expression within the components of the MIA pathway. Coordinated biosynthesis of precursors and intermediates throughout the pathway appear to be a feature of vinblastine/vincristine biosynthesis. The C. roseus genome also revealed localization of enzyme‐rich genic regions and transporters near known biosynthetic enzymes, highlighting how even a draft genome sequence can empower the study of high‐value specialized metabolites.  相似文献   

15.
The large-scale genomic resource for kelampayan was generated from a developing xylem cDNA library. A total of 6,622 high quality expressed sequence tags (ESTs) were generated through high-throughput 5’ EST sequencing of cDNA clones. The ESTs were analyzed and assembled to generate 4,728 xylogenesis unigenes distributed in 2,100 contigs and 2,628 singletons. About 59.3 % of the ESTs were assigned with putative identifications whereas 40.7 % of the sequences showed no significant similarity to any sequences in GenBank. Interestingly, most genes involved in lignin biosynthesis and several other cell wall biosynthesis genes were identified in the kelampayan EST database. The identified genes in this study will be candidates for functional genomics and association genetic studies in kelampayan aiming at the production of high value forests.  相似文献   

16.
Single nucleotide polymorphisms in cytochrome P450 genes from barley   总被引:12,自引:0,他引:12  
Plant cytochrome P450s are known to be essential in a number of economically important pathways of plant metabolism but there are also many P450s of unknown function accumulating in expressed sequence tag (EST) and genomic databases. To detect trait associations that could assist in the assignment of gene function and provide markers for breeders selecting for commercially important traits, detection of polymorphisms in identified P450 genes is desirable. Polymorphisms in EST sequences provide so-called perfect markers for the associated genes. The International Triticeae EST Cooperative data base of 24,344 ESTs was searched for sequences exhibiting homology to P450 genes representing the nine known clans of plant P450s. Seventy five P450 ESTs were identified of which 24 had best matches in Genbank to P450 genes of known function and 51 to P450s of unknown function. Sequence information from PCR products amplified from the genomic template DNA of 11 barley varieties was obtained using primers designed from six barley P450 ESTs and one durum wheat P450 EST. Single nucleotide polymorphisms (SNPs) between barley varieties were identified using five of the seven PCR products. A maximum of five SNPs and three haplotypes among the 11 barley lines were detected in products from any one primer pair. SNPs in three PCR products led to changes between barley varieties in at least one restriction site enabling genotyping and mapping without the expense of a specialist SNP detection system. The overall frequency of SNPs across the 11 barley varieties was 1 every 131 bases.  相似文献   

17.
18.
19.
20.
The Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex anticancer dimeric alkaloids vinblastine and vincristine, which are derived by the coupling of vindoline and catharanthine monomers. Recent data from in situ RNA hybridization and immunolocalization suggest that combinatorial cell factories within the leaf are involved in vindoline biosynthesis. In this study, the cell types responsible for vindoline biosynthesis were identified by laser-capture microdissection/RNA isolation/RT-PCR to show that geraniol hydroxylase, secologanin synthase, tryptophan decarboxylase, strictosidine synthase, strictosidine ss-glucosidase and tabersonine 16-hydroxylase can be detected preferentially in epidermal cells. A new and complementary application of the carborundum abrasion (CA) technique was developed to obtain epidermis-enriched leaf extracts that can be used to measure alkaloid metabolite levels, enzyme activities and gene expression. The CA technique showed that tabersonine and 16-methoxytabersonine, together with 16-hydroxytabersonine-16-O-methyltransferase, are found predominantly in Catharanthus leaf epidermis, in contrast to vindoline, catharanthine and later enzymatic steps in vindoline biosynthesis. The results show that leaf epidermal cells are biosynthetically competent to produce tryptamine and secologanin precursors that are converted via many enzymatic transformations to make 16-methoxytabersonine. This alkaloid or its 2,3 dihydro-derivative is then transported to cells (mesophyll/idioblast/laticifer) within Catharanthus leaves to complete the last three or four enzymatic transformations to make vindoline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号