首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) attenuates Ca2+ m overload and lessens myocardial dysfunction in a rat model of VF and closed-chest resuscitation. METHODS: hearts were harvested from 10 groups of 6 rats each representing baseline, 15 min of untreated VF, 15 min of VF with chest compression given for the last 5 min (VF/CC), and 60 min postresuscitation (PR). VF/CC and PR included four groups each randomized to receive before starting chest compression the new NHE-1 inhibitor AVE4454B (1.0 mg/kg), the Na+ channel blocker lidocaine (5.0 mg/kg), their combination, or vehicle control. The left ventricle was processed for intracellular Na+ and Ca2+ m measurements. RESULTS: limiting sarcolemmal Na+ entry attenuated cytosolic Na+ increase during VF/CC and the PR phase and prevented Ca2+ m overload yielding levels that corresponded to 77% and 71% of control hearts at VF/CC and PR, without differences among specific Na+ -limiting interventions. Limiting sarcolemmal Na+ entry attenuated reductions in left ventricular compliance during VF and prompted higher mean aortic pressure (110 +/- 7 vs. 95 +/- 11 mmHg, P < 0.001) and higher cardiac work index (159 +/- 34 vs. 126 +/- 29 g x m x min(-1) x kg(-1), P < 0.05) with lesser increases in circulating cardiac troponin I at 60 min PR. CONCLUSIONS: Na+ -limiting interventions prevented excess Ca2+ m accumulation induced by ischemia and reperfusion and ameliorated myocardial injury and dysfunction.  相似文献   

2.
Based on recent experimental studies, this review article introduces the novel concept that cardiomyocyte Ca2+ and ventricular fibrillation (VF) are mutually related, forming a self-maintaining vicious circle in the initiation, maintenance, and termination of VF. On the one hand, elevated myocyte Ca2+ can cause delayed afterdepolarizations, triggered activity, and consequently life-threatening ventricular tachyarrhythmias in various pathological conditions such as digitalis toxicity, myocardial ischemia, or heart failure. On the other hand, VF itself directly and rapidly causes progressive myocyte Ca2+ overload that maintains VF and renders termination of VF increasingly difficult. Accordingly, energy levels for successful electrical defibrillation (defibrillation thresholds) increase as both VF and Ca2+ overload progress. Furthermore, VF-induced myocyte Ca2+ overload can promote re-induction of VF after defibrillation and/or postfibrillatory myocardial dysfunction (postresuscitation stunning) due to reduced myofilament Ca2+ responsiveness. The probability of these adverse events is best reduced by early detection and rapid termination of VF to prevent or limit Ca2+ overload. Early additional therapy targeting transsarcolemmal Ca2+ entry, particularly during the first 2 min of VF, may partially prevent myocyte Ca2+ overload and thus, increase the likelihood of successful defibrillation as well as prevent postfibrillatory myocardial dysfunction.  相似文献   

3.
Inactivation of Ca channels was examined in crab muscle fibres using the voltage-clamp method. A satisfactory suppression of outward currents was attempted by the use of K+ blocking agents: TEA, 4AP and Cs ions instead of K+ ions applied extracellularly. The inactivation of Ca current appeared as a bi-exponential process. The faster component had a mean value of the time constant of 50 ms while the second component inactivated at a tenfold slower rate. The extent of inactivation of the faster component increased as the Ca current itself increased in different experimental conditions. Inactivation decreased when ICa was reduced for large applied depolarizations. The time constant of the faster calcium component also depended on the calcium current. Thus the results suggested that Ca2+ entry leads to inactivation of one component of calcium current in crab muscle. Substitution of Ca2+ ions by Sr2+ or Ba2+ ruled out the hypothesis concerning an accumulation process which would explain the decrease of the inward current. The second slower component of Ca current was better described by a voltage-dependent mechanism and its rate was not modified in Ca2+ rich solution or when the inward current was carried by Sr2+ or Ba2+ ions. Thus in crab muscle fibres, inactivation is mediated by both calcium entry and a voltage-gated mechanism.  相似文献   

4.
5.
A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.  相似文献   

6.
It has been known for a century that extracellular Ca2+ ions are needed for triggering contraction in the heart. However, the two possible mechanisms of Ca2+ entry into the cardiac cells have only been discovered and investigated recently: these are the voltage-gated Ca2+ channels and the Na+-Ca2+ exchange. This paper reviews the field of the control of cardiac contractility by the sarcolemma and describes various techniques used to study the Ca2+ transport and the corresponding two components of contraction: phasic and tonic tension. The most controversial issue of the past 5 years, attracting the attention of many investigators, is whether or not the Na+-Ca2+ exchange in the heart is electrogenic and voltage-dependent and thus contributes to the beat-to-beat regulation of free intracellular [Ca2+]. This paper concentrates on this controversy and gives an up-to-date view of the major steps in the development of our present concept of this transport and of some of the recent experimental approaches. The contribution of an electrogenic, voltage-dependent Na+-Ca2+ exchange to the regulation of contraction, as well as to cardia electrical activity, is discussed, and the alterations of both of these cardiac functions due to Na+ accumulation intracellularly (owing to various interventions) are described.  相似文献   

7.
Calcium, mitochondria and oxygen sensing in the pulmonary circulation   总被引:5,自引:0,他引:5  
Ward JP  Snetkov VA  Aaronson PI 《Cell calcium》2004,36(3-4):209-220
A key event in hypoxic pulmonary vasoconstriction (HPV) is the elevation in smooth muscle intracellular Ca2+ concentration. However, there is controversy concerning the source of this Ca2+, the signal transduction pathways involved, and the identity of the oxygen sensor. Although there is wide support for the hypothesis that hypoxia elicits depolarisation via inhibition of K+ channels, and thus promotes Ca2+ entry through L-type channels, a significant number of studies are inconsistent with this mechanism being either the sole or even major means by which Ca2+ is elevated during HPV. There is strong evidence that intracellular Ca2+ stores play a critical role, and voltage-independent Ca2+ entry mechanisms including capacitative Ca2+ entry (CCE) have also been implicated. There is renewed interest in the role of mitochondria in HPV, both in terms of modulators of Ca2+ homeostasis per se and as oxygen sensors. There is however considerable uncertainty concerning the mechanisms involved in the latter, with proposals for changes in redox couples and both an increase and decrease in mitochondrial production of reactive oxygen species (ROS). In this article we review the evidence for and against involvement of such mechanisms in HPV, and propose a model for the regulation of intracellular [Ca2+] in pulmonary artery during hypoxia in which the mitochondria play a central role.  相似文献   

8.
Strict control of calcium entry through excitatory synaptic receptors is important for shaping synaptic responses, gene expression, and cell survival. Disruption of this control may lead to pathological accumulation of Ca2+. The slow-channel congenital myasthenic syndrome (SCS), due to mutations in muscle acetylcholine receptor (AChR), perturbs the kinetics of synaptic currents, leading to post-synaptic Ca2+ accumulation. To understand the regulation of calcium signaling at the neuromuscular junction (NMJ) and the etiology of Ca2+ overload in SCS we studied the role of sarcoplasmic Ca2+ stores in SCS. Using fura-2 loaded dissociated fibers activated with acetylcholine puffs, we confirmed that Ca2+ accumulates around wild type NMJ and discovered that Ca2+ accumulates significantly faster around the NMJ of SCS transgenic dissociated muscle fibers. Additionally, we determined that this process is dependant on the activation, altered kinetics, and movement of Ca2+ ions through the AChR, although, surprisingly, depletion of intracellular stores also prevents the accumulation of this cation around the NMJ. Finally, we concluded that the sarcoplasmic reticulum is the main source of Ca2+ and that inositol-1,4,5-triphosphate receptors (IP3R), and to a lesser degree L-type voltage gated Ca2+ channels, are responsible for the efflux of this cation from intracellular stores. These results suggest that a signaling system mediated by the activation of AChR, Ca2+, and IP3R is responsible for localized Ca2+ signals observed in muscle fibers and the Ca2+ overload observed in SCS.  相似文献   

9.
In the experiments conducted with application of an isotopic technique (45Ca2+) on the myometrium cells suspension treated by digitonin solution (0.1 mg/ml) some properties of Ca ions accumulation system in the mitochondria--cationic and substrate specificity as well as effects of Mg2+ and some other bivalent metals ions on the Ca2+ accumulation velocity have been estimated. Ca ions accumulation from the incubation medium containing 3 mM sodium succinate Na, 2 mM Pi (as potassium K(+)-phosphate buffer, pH 7.4 at 37 degrees C), 0.01 mM (40CaCl2 + 45CaCl2) and 100 nM thapsigargin--selective inhibiting agent of endoplasmatic reticulum calcium pump were demonstrated as detected just only in presence of Mg, while not Ni, Co or Cu ions. The increase of Mg2+ concentration from 1 x 10(-6) to 10(-3) M induced the ATP dependent transport activation in the myometrium mitochondria. Under [Mg2+] increase till 40 mM this cation essentially decreased Ca2+ accumulation (by 65% from the maximal value). The optimum for Ca2+ transport in the myometrium cells suspension is Mg2+ 10 mM concentration. Ka activation apparent constant along Mg2+ value (in presence 3 mM ATP and 3 mM sodium succinate) is 4.27 mM. The above listed bivalent metals decreased Mg2+, ATP-dependent accumulation of calcium, values of inhibition apparent constants for ions Co2+, Ni2+ and Cu2+ were--2.9 x 10(-4) M, 5.1 x 10(-5) M and 4.2 x 10(-6) M respectively. For Mg2+, ATP-dependent Ca2+ transport in the uterus myocytes mitocondria a high substrate specificity is a characteristic phenomenon in elation to ATP: GTP, CTP and UTP practically fail to provide for Ca accumulation process.  相似文献   

10.
Activity of the bone/liver/kidney isozyme of alkaline phosphatase (AP) is known to be critical for mineralization in developing bone, although its role is unclear. The work now reported explores changes in the activity of this Zn2+-containing enzyme that occur during Ca2+ accumulation by matrix vesicles (MV). A marked loss (up to 65-70%) in AP activity was found to accompany Ca2+ accumulation by MV. These two events were highly correlated, both temporally and quantitatively. Investigation into possible causes revealed that the decline in AP activity during Ca2+ uptake was not due to action of proteases but rather resulted from interaction with the developing mineral phase, loss of metal ions (Zn2+ and Mg2+) from the active site of the enzyme, and concomitant irreversible denaturation of the enzyme. Protease inhibitors did not protect AP from loss of activity during mineralization; in contrast, protease treatments, which progressively destroyed the ability of MV to accumulate Ca2+ actually reduced loss of AP activity. These findings clearly demonstrate that AP is present at the site of MV mineralization and that its catalytic activity is profoundly reduced by the mineralization process.  相似文献   

11.
1. Fusogenic and non-fusogenic chemicals were tesetd for their ability to allow 45Ca2+ and 3H2O to enter hen and human erythrocytes. 2. The ratio of 45Ca2+/3H2O in treated cells to that in untreated cells is referred to as the entry ratio. 3. Within 1 min at 37 degrees C both water-soluble and lipid-soluble fusogens increased the value of the entry ratio, which reached maximum values in 5--10 min. 4. Values of the entry ratio in the range of 4--12 were found under conditions that led to cell fusion. 5. Closely related but non-fusogenic chemicals did not significantly alter the entry ratio. 6. The entry ratios for 86Rb+, 22Na+ and 35SO42- were also significantly increased by both lipid-soluble and water-soluble fusogens, though the increases were not as large as those for 45Ca2+. 7. It is suggested that fusogenic compounds increase the permeability of biological membranes to ions, and that an increase in the concentration of intracellular Ca2+ initiates or facilitates events that lead to the chemically induced fusion of erythrocytes.  相似文献   

12.
Measurements of free cystolic Ca2+ ([Ca2+]i) and Ba2+ ([Ba2+]i) concentrations with Fura 2 were used to identify and characterize the properties of a depolarization-activated Ca2+ and Ba2+ entry in the plasma membrane of osteoblast-like cells. The presence of this pathway was demonstrated in two osteoblastic cell lines, UMR-106 and MC3T3-E1 and osteoblasts isolated from rat long bone and rat neonatal calvariae. Subsequent characterization of the pathway was performed in the osteosarcoma cell line UMR-106. Depolarization of the cells with high medium K+ was followed by an increase in [Ca2+]i which was dependent on medium Ca2+. Ba2+ ions depolarized the cells and were transported by this pathway. Mg2+ ions interfered with Ca2+ and Ba2+ entry. At 140 mM KCl and 1 mM MgCl2, the pathway could be saturated with Ca2+ or Ba2+. The apparent affinity for Ca2+ was 0.78 mM and for Ba2+ 1.82 mM. Ca2+ or Ba2+ entry into the cells was blocked by low concentrations of nicardipine, diltiazem, verapamil, and La3+. In the absence of an increase in [Ca2+]i or [Ba2+]i, the pathway inactivated within about 5 min after depolarization. When [Ca2+]i or [Ba2+]i was allowed to increase, the pathway inactivated within about 20 s. These properties suggest that Ca2+ and Ba2+ entry are mediated by an L-type, depolarization-activated Ca2+ channel in osteoblasts. The activity of these channels changes little with an increase or decrease in cell volume. Thus, it is concluded that these pathways do not provide the Ca2+ entry pathway required for initiation of volume decrease by osteoblasts.  相似文献   

13.
The second messenger function of inositol 1,4,5-trisphosphate (InsP3) is now well-defined--it mobilizes Ca2+ from intracellular stores so that cystolic Ca2+ increases. However, the function of inositol 1,3,4,5-tetrakisphosphate (InsP4) has proved much more difficult to fathom, as it has been reported to exert a wide variety of effects in a collection of experimental systems. In this review, a proposed molecular mechanism for InsP4's actions is discussed; it is suggested that InsP4 is the second messenger that controls Ca2+ entry into cells, and that it does so by binding to a receptor which itself interacts, directly or indirectly, with the receptor for InsP3. It is proposed that this is InsP4's true physiological function, but the mechanism by which it exerts this function has led to confusing data concerning its action, and also to some misconceptions about how inositol phosphates control Ca2+ entry.  相似文献   

14.
Endothelial cells (EC) synthesize platelet-activating factor (PAF) when stimulated with agonists that bind to cell-surface receptors. We examined events that link receptor binding to synthesis of PAF by EC. Bovine EC stimulated with agonists that interact with specific cell-surface receptors accumulated PAF only in the presence of extracellular calcium. Hormonal stimulation of EC resulted in Ca2+ entry characteristic of that seen with receptor-operated calcium channels; Indo-1 measurements demonstrated that this inward flux of Ca2+ caused prolonged elevated levels of intracellular Ca2+. EC were exposed to melittin or theta toxin from Clostridium perfringens (pore-forming peptides that increase the permeability of the plasma membrane for small molecules) resulting in an inward flux of Ca2+ and accumulation of PAF. Ca2+ appears to be regulatory for PAF production at the level of phospholipase A2-mediated production of the PAF precursor 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine, as Ca2+ was required for the stimulated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. PAF accumulation in EC is also regulated by protein kinase C. Pretreatment of EC with phorbol esters that activate protein kinase C or with dioctanoylglycerol, followed by stimulation, resulted in a 2-fold increase in stimulated PAF production. The regulatory effect of protein kinase C also appears to be at a phospholipase A2-mediated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine.  相似文献   

15.
A comparative pharmacological analysis of relative contributions of different signal transduction pathways in the activation of contraction (excitation-contraction coupling, ECC) in intact fast striated muscles of frog and lamprey was performed. It was found that the major mechanism responsible for the ECC in muscles of both animals is Ca2+ release from the sarcoplasmic reticulum through the ryanodine-sensitive channels. However, the ECC in lamprey muscle displays some important differences in the units of electromechanical coupling, which precede the calcium release from sarcoplasmic reticulum. The maximum contraction force in frog muscle develops during caffeine-induced contracture, which indicates that all Ca2+ stored in sarcoplasmic reticulum is released through ryanodine-sensitive channels. In contrast, in lamprey muscle, the maximum force develops not in response to high caffeine concentration, but in response to repetitive electrical stimulation. Hence, in addition to stores liberated by ryanodine-sensitive channels, some other sources of calcium ions should exist, which contribute to the contraction activation. A source of this additional Ca2+ ions can be external medium, because acetylcholine contracture is abolished in a calcium-free medium. In frog muscle, the acetylcholine contracture was abolished in a Na(+)-free solution. It was concluded that in frog muscle ECC can be triggered by changes in the transmembrane potential (depolarization-induced calcium release), while in lamprey muscle the entry of calcium ions into myoplasm as the trigger in ECC (calcium-induced calcium release). The lamprey muscle was found to be more resistant to tetrodotoxin and tetracaine, which is indicative of a role in the activation of contraction of tetrodotoxin-resistant Na+ and/or Ca2+ channels. It was concluded, that ECC mechanism in striated muscles of low vertebrates is not limited by the generally accepted scheme of depolarization-induced calcium release but can include some other schemes, which require the Ca2+ influx into the cell.  相似文献   

16.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

17.
Activation of surface membrane receptors coupled to phospholipase C results in the generation of cytoplasmic Ca2+ signals comprised of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. A primary mechanism for this Ca2+ entry process is attributed to store-operated Ca2+ entry, a process that is activated by depletion of Ca2+ ions from an intracellular store by inositol 1,4,5-trisphosphate. Our understanding of the mechanisms underlying both Ca2+ release and store-operated Ca2+ entry have evolved from experimental approaches that include the use of fluorescent Ca2+ indicators and electrophysiological techniques. Pharmacological manipulation of this Ca2+ signaling process has been somewhat limited; but recent identification of key molecular players, STIM and Orai family proteins, has provided new approaches. Here we describe practical methods involving fluorescent Ca2+ indicators and electrophysiological approaches for dissecting the observed intracellular Ca2+ signal to reveal characteristics of store-operated Ca2+ entry, highlighting the advantages, and limitations, of these approaches.  相似文献   

18.
The only way for a tissue or organ to survive ischemia is by reperfusion or restoration of the blood flow. However, if the ischemic period is too long reperfusion leads to a Ca2+ overload of the myocardial cells and thereby to cell death. The question is; what are the key events during ischemia which cause this transition from reversible to irreversible injury. In this article we discuss whether acidosis may play a crucial role by inducing Ca2+ release from the sarcolemma and reorganization of membrane components especially the membrane lipids, i.e. lateral phase separation, resulting in membrane protein clustering and changes in lipid asymmetry.  相似文献   

19.
Activation of surface folate receptors or cyclic AMP (cAMP) receptor (cAR) 1 in Dictyostelium triggers within 5-10 s an influx of extracellular Ca2+ that continues for 20 s. To further characterize the receptor-mediated Ca2+ entry, we analyzed 45Ca2+ uptake in amoebas overexpressing cAR2 or cAR3, cARs present during multicellular development. Both receptors induced a cAMP-dependent Ca2+ uptake that had comparable kinetics, ion selectivity, and inhibitor profiles as folate- and cAR1-mediated Ca2+ uptake. Analysis of mutants indicated that receptor-induced Ca2+ entry does not require G protein alpha subunits G alpha 1, G alpha 2, G alpha 3, G alpha 4, G alpha 7, or G alpha 8. Overexpression of cAR1 or cAR3 in g alpha 2- cells did not restore certain G alpha 2-dependent events, such as aggregation, or cAMP-mediated activation of adenylate and guanylate cyclases, but these strains displayed a cAMP-mediated Ca2+ influx with kinetics comparable to wild-type aggregation-competent cells. These results suggest that a plasma membrane-associated Ca(2+)-influx system may be activated by at least four distinct chemoreceptors during Dictyostelium development and that the response may be independent of G proteins.  相似文献   

20.
An increased entry of Ca2+ across the plasma membrane plays a key role in the generation and maintenance of the [Ca2+]i signals seen in cells following activation of receptors coupled to the PLC/InsP3 signaling pathway. In recent years, considerable efforts have been made to define the nature and control of this agonist-enhanced Ca2+ entry. To date, these studies have largely focussed on the so-called 'capacitative' or store-operated model and, although many important details remain unclear, the critical role this mechanism plays in maintaining the sustained elevated 'plateau' type of [Ca2+]i response seen at high agonist concentrations is now well established. Far less well understood is the nature of the enhanced Ca2+ entry associated with the more complex [Ca2+]i signals typical of stimulation at more physiological levels of agonist. Where such entry has been considered, it too has generally been assumed to result from a capacitative or 'store-operated' mechanism. Significantly, however, direct evidence in support of this assumption is lacking. This review attempts to critically examine this assumption and presents the argument that several key characteristics of capacitative or store-operated mechanisms of agonist-activated Ca2+ entry are incompatible with its operation during these types of [Ca2+]i signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号