首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colonial protochordate Botryllus schlosseri is genetically manipulable and represents a potential model organism for a variety of biological disciplines, including immunology, stem cell biology and development. This article presents the construction and characterization of both BAC and fosmid genomic libraries of the 725-Mbp B. schlosseri genome. The BAC library currently consists of 2× genome coverage with an average insert size of 80 kb. The fosmid library is at 11× genome coverage with an average insert of 40 kb. B. schlosseri is a small organism containing a large number of compounds that hinder DNA purification. Thus a number of protocols had to be modified in order to make purified, high molecular weight inserts for cloning, including both gel purification and insert concentration techniques. Both libraries were characterized by using them in initial physical mapping of a single histocompatibility locus, and were found to be representative and functional. These libraries are important tools for physical mapping and positional cloning in the B. schlosseri genome, and the techniques adapted to make them are suitable for use on other organisms in which high molecular weight DNA is difficult to purify.  相似文献   

2.
Colonies of the cosmopolitan urochordate Botryllus schlosseri that share one or both alleles at a single allorecognition locus (Fu/HC) and come into tissue contacts, may fuse and form a mixed entity, a chimera. Botryllus populations worldwide exhibit unprecedented extensive polymorphism at this locus, a result that restricts fusions to kin encounters. This study aims to compare spatiotemporal configurations in source and introduced B. schlosseri populations, residing on natural and man-made substrata, respectively. By using four microsatellite loci, we tested genetic consanguinity of colonies settled naturally along spatial vectors on both, natural (native populations) and man-made (introduced) substrates. Four populations were studied. Results revealed that B. schlosseri colonies, on both substrate types, assemble in groups of relatives that share similar microsatellite profiles. We suggest that this pattern of settlement promotes the formation of chimeras, which evoke conflicting interactions: cooperation between different somatic cell lines that constitute the colonial soma and competition between germ cells that inhabit the chimera gonads. Under natural conditions, the chimera may allow genetic flexibility that depends on joint genomic fitness of its partners. This is probably one of the life history characteristics that led to the worldwide distribution success of this species.  相似文献   

3.
 The protochordate allorecognition system has long invited comparison with the vertebrate major histocompatibility complex (MHC). In the colonial species Botryllus schlosseri, a rapid fusion or rejection response resembling graft acceptance or rejection in vertebrates is controlled by a single highly polymorphic genetic region. Because linkage between heat shock protein 70 (HSP70) genes and the MHC appears to be conserved within the vertebrate lineage, linkage relationships between two HSP70 genes (HSP70.1 and HSP70.2) and the historecognition locus (FuHC) have been analyzed in B. schlosseri. Segregation patterns of restriction fragment length polymorphisms located in the 3′ flanking regions of HSP70.1 and HSP70.2 were determined for progeny of defined crosses. These progeny were also analyzed for fusibility type by an in vivo cut colony assay. No close linkage was detected between any of the three loci. These results do not support the hypothesis that the allorecognition response in B. schlosseri is determined by an MHC homologue. However, it remains a possibility that orthologues of other MHC-linked genes will be linked to the B. schlosseri FuHC. Received: 29 June 1997 / Revised: 6 October 1997  相似文献   

4.
Summary A complete physical map of the Codium fragile chloroplast genome was constructed and the locations of a number of chloroplast genes were determined. Several features of this circular genome are unusual. At 89 kb in size, it is the smallest chloroplast genome known. Unlike most chloroplast genomes it lacks any large repeat elements. The 8 kb spacer region between the 16 S and 23 S rRNA genes is the largest such spacer characterized to date in chloroplast DNA. This spacer region is also unusual in that it contains the rps12 gene or at least a portion thereof. Three regions polymorphic for size are present in the Codium chloroplast genome. The psbA and psbC genes map closely to one of these regions, another region is in the spacer between the 16 S and 23 S rRNA genes and the third is very close to or possibly within the 16 S rRNA gene. The gene order in the Codium genome bears no marked resemblance to either the consensus vascular plant order or to that of any green algal or bryophyte genome. Present address: Department of Biology, Texas A&M University, College Station, TX 77843; USA  相似文献   

5.
Sporophytic self-incompatibility (SSI) in the genus Ipomoea (Convolvulaceae) is controlled by a single polymorphic S locus. We have previously analyzed genomic sequences of an approximately 300 kb region spanning the S locus of the S 1 haplotype and characterized the genomic structure around this locus. Here, we further define the physical size of the S locus region by mapping recombination breakpoints, based on sequence analysis of PCR fragments amplified from the genomic DNA of recombinants. From the recombination analysis, the S locus of the S 1 haplotype was delimited to a 0.23 cM region of the linkage map, which corresponds to a maximum physical size of 212 kb. To analyze differences in genomic organization between S haplotypes, fosmid contigs spanning approximately 67 kb of the S 10 haplotype were sequenced. Comparison with the S 1 genomic sequence revealed that the S haplotype-specific divergent regions (SDRs) spanned 50.7 and 34.5 kb in the S 1 and S 10 haplotypes, respectively and that their flanking regions showed a high sequence similarity. In the sequenced region of the S 10 haplotype, five of the 12 predicted open reading frames (ORFs) were found to be located in the divergent region and showed co-linear organization of genes between the two S haplotypes. Based on the size of the SDRs, the physical size of the S locus was estimated to fall within the range 34–50 kb in Ipomoea.  相似文献   

6.
7.
In petunia, a mitochondrial (mt) locus,S-Pcf, has been found to be strongly associated with cytoplasmic male sterility (CMS). TheS-Pcf locus consists of three open reading frames (ORF) that are co-transcribed. The first ORF,Pcf, contains parts of theatp9 andcoxII genes and an unidentified reading frame,urf-s. The second and third ORFs contain NADH dehydrogenase subunit 3 (nad3) and ribosomal protein S12 (rps12) sequences, respectively. Thenad3 andrps12 sequences included in theS-Pcf locus are identical to the corresponding sequences on the mt genome of fertile petunia. In both CMS and fertile petunia, only a single copy ofnad3 andrps12 has been detected on the physical map of the main mt genome. The origin of theurf-s sequence and the molecular events leading to the formation of the chimericS-Pcf locus are not known. This paper presents evidence indicating that two different mt sequences, related tourf-s and found in fertile petunia lines (orf-h and Rf-1), might have been involved in the molecular evolution of theS-Pcf locus. Southern analysis of mtDNA derived from both fertile and sterile petunia plants suggests that one of theseurf-s related sequences (showing 100% homology tourf-s and termedorf-h) is located on a sublimon. An additional, low-homologyurf-s related sequence (Rf-1) is shown to be located on the main mt genome 5′ to thenad3 gene. It is, thus, suggested that the sequence of events leading to the generation of theS-Pcf locus might have involved introduction of theorf-h sequence, via homologous recombination, into the main mt genome 5′ tonad3 at the region where the Rf-1 sequence is located. Contribution [No. 1581-E (1995 series)] from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel 50 250  相似文献   

8.
Pi-z is a disease resistance gene that has been effectively used to combat a broad-spectrum of races of the rice blast fungus Magnaporthe grisea. Although DNA markers have been reported for selection of the Pi2(t) and Pi-z resistance genes at the Pi-z locus, markers that are more tightly linked to the Pi-z locus would benefit rapid and effective cultivar development. Analysis of the publicly available genome sequence of Nipponbare near the Pi-z locus revealed numerous SSRs that could be converted into markers. Three SSRs on rice PAC AP005659 were found to be very tightly linked to the Pi-z locus, with one marker, AP5659-3, co-segregating with the Pi-z resistance reaction. The Pi-z factor conferring resistance to two races of blast was mapped to a 57 kb region on the physical map of Nipponbare in a location where the Pi2(t) gene was physically mapped. Two SSR marker haplotypes were unique for cultivars carrying the Pi-z gene, which indicates these markers are useful for selection of resistance genes at the Pi-z locus in rice germplasm.  相似文献   

9.
10.
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Larkan NJ  Smith SE  Barker SJ 《Mycorrhiza》2007,17(4):311-318
Our research aims to investigate the molecular communication between land plants and arbuscular mycorrhizal (AM) fungi in the establishment of symbiosis. We have identified a mutation in the facultative AM host tomato, which we named rmc. Plants that are homozygous for rmc no longer host most AM fungi. The mutation also affects the interaction of tomato with root knot nematode and Fusarium wilt. However, the function/s encoded by the intact Rmc locus is/are unknown. To clone and sequence the gene or genes that comprise the Rmc locus, we have initiated a positional cloning project. In this paper, we report the construction of mapping populations and use of molecular markers from the published genome map to identify the location of Rmc on tomato chromosome 8. Nucleotide binding site-leucine rich repeat resistance genes, reported to reside in the same region of that chromosome, provided insufficient differences to develop cleaved amplified polymorphic sequence markers. Therefore, we were unable to map these sequences in relation to rmc. Our results potentiate future work to identify the Rmc function and to determine the genetic basis for the multiple plant-microbe interaction functions that the rmc mutation has defined.  相似文献   

12.
To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences were colinear, but three major expansion/contraction regions in T. halophila were found to contain five Long Terminal Repeat retrotransposons, MuDR DNA transposons and intergenic sequences that contribute to the 47.8-kb size variation in this region of the genome. Twenty-seven genes were annotated in the T. halophila BAC including the putative ThSOS1 locus. ThSOS1 shares gene structure and sequence with A. thaliana SOS1 including 11 predicted transmembrane domains and a cyclic nucleotide-binding domain; however, different patterns of Simple Sequence Repeats were found within a 540-bp region upstream of SOS1 in the two species.  相似文献   

13.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

14.
15.
To facilitate gene identification, this study aimed to narrow the scope of the genome region affecting chicken comb type by using two bird populations. First, an F2 resource population was generated by crossing Japanese game fowl (Shamo; pea comb, P/p and P/P) with White Plymouth Rock (single comb, p/p). Comb types of the 240 F2 offspring produced by an F1 intercross between eight males and 57 females were segregated at a ratio of 3:1 (pea:single). The pea comb locus was mapped to a chromosomal region on Gallus gallus chromosome 1 that was flanked by microsatellite markers MCW0112, MCW0019 and ABR521. The second population (five‐generation, n=1300 animals) was derived from a cross between Shamo and Rhode Island Red (single comb, p/p) that had been genotyped for additional polymorphic single nucleotide polymorphisms and microsatellite markers within this region through development of chicken draft sequences. To close some gaps in these draft sequences, we constructed a bacterial artificial chromosome contig and sequenced it using the shotgun sequencing technique. Chickens selected from pedigrees in these populations were grouped by inheritance of a P or p haplotype at the locus constructed by the additional markers. Finally, this locus was fine‐mapped to roughly 60 kb based on the association of haplotypes and comb types. Chicken genome sequences suggest that the most likely polymorphism responsible for the pea comb locus is a duplicated sequence and that the sex determining region Y‐box 5 gene, one predicted gene and one expressed sequence tag in a critical region may be associated with the duplicated sequence.  相似文献   

16.
In species with duplicated major histocompatibility complex (MHC) genes, estimates of genetic variation often rely on multilocus measures of diversity. It is possible that such measures might not always detect more detailed patterns of selection at individual loci. Here, we describe a method that allows us to investigate classical MHC diversity in red jungle fowl (Gallus gallus), the wild ancestor of the domestic chicken, using a single locus approach. This is possible due to the well-characterised gene organisation of the ‘minimal essential’ MHC (BF/BL region) of the domestic chicken, which comprises two differentially expressed duplicated class I (BF) and two class II B (BLB) genes. Using a combination of reference strand-mediated conformation analysis, cloning and sequencing, we identify nine BF and ten BLB alleles in a captive population of jungle fowl. We show that six BF and five BLB alleles are from the more highly expressed locus of each gene, BF2 and BLB2, respectively. An excess of non-synonymous substitutions across the jungle fowl BF/BL region suggests that diversifying selection has acted on this population. Importantly, single locus screening reveals that the strength of selection is greatest on the highly expressed BF2 locus. This is the first time that a population of red jungle fowl has been typed at the MHC region, laying the basis for further research into the underlying processes acting to maintain MHC diversity in this and other species.  相似文献   

17.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   

18.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

19.
Summary We find that recombination between two alleles of the maize A1 locus that contain transposon insertions at known molecular positions can occur at 0.04–0.08 cM per kbp (centimorgan per kilobase pair), which is two orders of magnitude higher than the recombination rate for the whole maize genome. It is however, close to the rates found within the bronze locus, another maize structural gene for which both genetic and molecular data are available. This observation supports the idea that the genome consists of regions that are highly recombinogenic — in some cases, at least, structural genes — interspersed with regions that are less recombinogenic.  相似文献   

20.
Cnr (Colourless non-ripening) is a dominant pleiotropic ripening mutation of tomato (Lycopersicon esculentum) which has previously been mapped to the proximal region of tomato chromosome 2. We describe the fine mapping of the Cnr locus using both linkage analysis and fluorescence in situ hybridisation (FISH). Restriction fragment length polymorphism (RFLP)-, amplified restriction fragment polymorphism (AFLP)-, and cleaved amplified polymorphic sequence (CAPS)-based markers, linked to the Cnr locus were mapped onto the long arm of chromosome 2. Detailed linkage analysis indicated that the Cnr locus was likely to lie further away from the top of the long arm than previously thought. This was confirmed by FISH, which was applied to tomato pachytene chromosomes in order to gain an insight into the organisation of hetero- and euchromatin and its relationship to the physical and genetic distances in the Cnr region. Three molecular markers linked to Cnr were unambiguously located by FISH to the long arm of chromosome 2 using individual BAC probes containing these single-copy sequences. The physical order of the markers coincided with that established by genetic analysis. The two AFLP markers most-closely linked to the Cnr locus were located in the euchromatic region 2.7-cM apart. The physical distance between these markers was measured on the pachytene spreads and estimated to be approximately 900 kb, suggesting a bp:cM relationship in this region of chromosome 2 of about 330 kb/cM. This is less than half the average value of 750 kb/cM for the tomato genome. The relationship between genetic and physical distances on chromosome 2 is discussed. Received: 11 January 2001 / Accepted: 30 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号