首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mediterranean Sea common dolphins have recently been listed as ‘endangered’ in the IUCN Red list, due to their reported decline since the middle of the 20th century. However, little is know about the number or distribution of populations in this region. We analysed 118 samples from the Black Sea, Mediterranean Sea and eastern North Atlantic at nine microsatellite nuclear loci and for 428 bps of the mtDNA control region. We found small but significant population differentiation across the basin between the eastern and the western Mediterranean populations at both nuclear and mtDNA markers (microsatellite F ST = 0.052, mtDNA F ST = 0.107, P values ≤ 0.001). This matched the differential distribution and habitat use patterns exhibited by this species in the eastern and the western parts of the Mediterranean Sea. The assignment test of a small number of samples from the central Mediterranean could not exclude further population structure in the central area of the basin. No significant genetic differentiation at either marker was observed among the eastern north Atlantic populations, though the Alboran population (inhabiting the Mediterranean waters immediately adjacent the Atlantic ocean) showed significant mtDNA genetic differentiation compared to the Atlantic populations. Directional estimates of gene flow suggested movement of females out of the Mediterranean, which may be relevant to the population decline. Phylogenetic analysis suggested that the observed population structure evolved recently.  相似文献   

2.
Knowledge of the mechanisms limiting connectivity and gene flow in deep‐sea ecosystems is scarce, especially for deep‐sea sharks. The Portuguese dogfish (Centroscymnus coelolepis) is a globally distributed and near threatened deep‐sea shark. C. coelolepis population structure was studied using 11 nuclear microsatellite markers and a 497‐bp fragment from the mtDNA control region. High levels of genetic homogeneity across the Atlantic (ΦST = ?0.0091, FST = 0.0024, > 0.05) were found suggesting one large population unit at this basin. The low levels of genetic divergence between Atlantic and Australia (ΦST = 0.0744, < 0.01; FST = 0.0015, > 0.05) further suggested that this species may be able to maintain some degree of genetic connectivity even across ocean basins. In contrast, sharks from the Mediterranean Sea exhibited marked genetic differentiation from all other localities studied (ΦST = 0.3808, FST = 0.1149, < 0.001). This finding suggests that the shallow depth of the Strait of Gibraltar acts as a barrier to dispersal and that isolation and genetic drift may have had an important role shaping the Mediterranean shark population over time. Analyses of life history traits allowed the direct comparison among regions providing a complete characterization of this shark's populations. Sharks from the Mediterranean had markedly smaller adult body size and size at maturity compared to Atlantic and Pacific individuals. Together, these results suggest the existence of an isolated and unique population of C. coelolepis inhabiting the Mediterranean that most likely became separated from the Atlantic in the late Pleistocene.  相似文献   

3.
The movement of Atlantic bluefin tuna (ABFT) across international boundaries necessitates traceability strategies that would provide more accurate information needed for stock assessment. The Mediterranean Sea is one of the main contributors to ABFT reproduction and global population genetic diversity. In the present study this genetic variability was investigated using 193 samples of adult bluefin tuna from Spain, Turkey and Malta – a longitudinal distance of 3400 km. Analysed were 13 microsatellite loci (eight of which were newly‐tested) as genetic markers for the population study. Allele richness measured per locus and sampling location varied from 1.89 to 8.88, taking into account rarefaction. ABFT private alleles were detected in each of the three sampling sites. No significant spatial genetic divergence was found between pairs at the studied locations (FST values <0.0001; P‐values >0.05). Bayesian clustering analysis corroborated a single and panmictic ABFT population in the Mediterranean Sea. Statistical power analyses indicated a high probability of detecting genetic differentiation and population structure with the sample size and microsatellites used, even at an FST value of 0.005. From the results it may be postulated that migrating ABFT during the spawning season are allowing gene flow within the Mediterranean Sea. The complex interplay of movements, including plasticity in the selection of spawning sites with increasing age and environmental conditions, require multiple and new fisheries monitoring and management techniques in order to target the ABFT long‐term conservation effectively.  相似文献   

4.
A comparison of the genetic structure of Chimaera monstrosa populations from the Atlantic Ocean and the Mediterranean Sea was carried out using mitochondrial DNA analysis. Results indicate high and significant pairwise ΦST values with no shared haplotypes between the two areas. Furthermore, migration rate estimates suggested absence of gene flow between the two basins. These findings, coupled with the species vertical distribution, suggest that the shallow depth of the Strait of Gibraltar may act as a barrier limiting the dispersal capabilities of these populations, which likely became separated at the end of the middle Pleistocene.  相似文献   

5.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

6.
The intentional introduction of red king crab, Paralithodes camtschatica (Tilesius, 1815) in the Barents Sea represent one of a few successful cases and one that now supports a commercial fishery. Introductions of alien species into new environments are often associated with genetic bottlenecks, which cause a reduction in the genetic variation, and this could be important for the spreading potential of the species in the Atlantic Ocean. Red king crab samples collected in the Varangerfjord located on the Barents Sea (northern Norway) were compared with reference crab samples collected from the Bering Sea and Kamchatka regions in the Pacific Ocean. All samples were screened for eleven microsatellite loci, based on the development of species-specific primers. The observed number of alleles per locus was similar, and no reduction in genetic variation, including gene diversity and allelic richness, was detected between the Varangerfjord sample and the reference sample from Okhotsk Sea near Kamchatka, indicating no genetic bottlenecking at least for the microsatellite loci investigated. The same results were found in comparison with the sample from Bering Sea. The level of genetic differentiation among the samples, measured as overall F ST across all loci, was relatively low (0.0238) with a range of 0.0035–0.1000 for the various loci investigated. The largest pairwise F ST values were found between the Bering Sea and Varangerfjord/Barents Sea samples, with a value of 0.0194 across all loci tested. The lowest value (0.0101) was found between the Varangerfjord and Kamchatka samples. Genetic differentiation based on exact tests on allele frequencies revealed highly significant differences between all pairwise comparisons. The high level of genetic variation found in the Varangerfjord/Barents Sea sample could be of significance with respect to further spreading of the species to other regions in the North Atlantic Ocean.  相似文献   

7.
Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome‐wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large‐ and fine‐scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (FCT range 0.275–0.705) and fine‐scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.  相似文献   

8.
Aim To elucidate the historical phylogeography of the dusky pipefish (Syngnathus floridae) in the North American Atlantic and Gulf of Mexico ocean basins. Location Southern Atlantic Ocean and northern Gulf of Mexico within the continental United States. Methods A 394‐bp fragment of the mitochondrial cytochrome b gene and a 235‐bp fragment of the mitochondrial control region were analysed from individuals from 10 locations. Phylogenetic reconstruction, haplotype network, mismatch distributions and analysis of molecular variance were used to infer population structure between ocean basins and time from population expansion within ocean basins. Six microsatellite loci were also analysed to estimate population structure and gene flow among five populations using genetic distance methods (FST, Nei’s genetic distance), isolation by distance (Mantel’s test), coalescent‐based estimates of genetic diversity and migration patterns, Bayesian cluster analysis and bottleneck simulations. Results Mitochondrial analyses revealed significant structuring between ocean basins in both cytochrome b (ΦST = 0.361, P < 0.0001; ΦCT = 0.312, P < 0.02) and control region (ΦST = 0.166, P < 0.0001; ΦCT = 0.128, P < 0.03) sequences. However, phylogenetic reconstructions failed to show reciprocal monophyly in populations between ocean basins. Microsatellite analyses revealed significant population substructuring between all locations sampled except for the two locations that were in closest proximity to each other (global FST value = 0.026). Bayesian analysis of microsatellite data also revealed significant population structuring between ocean basins. Coalescent‐based analyses of microsatellite data revealed low migration rates among all sites. Mismatch distribution analysis of mitochondrial loci supports a sudden population expansion in both ocean basins in the late Pleistocene, with the expansion of Atlantic populations occurring more recently. Main conclusions Present‐day populations of S. floridae do not bear the mitochondrial DNA signature of the strong phylogenetic discontinuity between the Atlantic and Gulf coasts of North America commonly observed in other species. Rather, our results suggest that Atlantic and Gulf of Mexico populations of S. floridae are closely related but nevertheless exhibit local and regional population structure. We conclude that the present‐day phylogeographic pattern is the result of a recent population expansion into the Atlantic in the late Pleistocene, and that life‐history traits and ecology may play a pivotal role in shaping the realized geographical distribution pattern of this species.  相似文献   

9.
Gelatinous zooplankton outbreaks have increased globally owing to a number of human-mediated factors, including food web alterations and species introductions. The invasive ctenophore Mnemiopsis leidyi entered the Black Sea in the early 1980s. The invasion was followed by the Azov, Caspian, Baltic and North Seas, and, most recently, the Mediterranean Sea. Previous studies identified two distinct invasion pathways of M. leidyi from its native range in the western Atlantic Ocean to Eurasia. However, the source of newly established populations in the Mediterranean Sea remains unclear. Here we build upon our previous study and investigate sequence variation in both mitochondrial (Cytochrome c Oxidase subunit I) and nuclear (Internal Transcribed Spacer) markers in M. leidyi, encompassing five native and 11 introduced populations, including four from the Mediterranean Sea. Extant genetic diversity in Mediterranean populations (n = 8, N a = 10) preclude the occurrence of a severe genetic bottleneck or founder effects in the initial colonizing population. Our mitochondrial and nuclear marker surveys revealed two possible pathways of introduction into Mediterranean Sea. In total, 17 haplotypes and 18 alleles were recovered from all surveyed populations. Haplotype and allelic diversity of Mediterranean populations were comparable to populations from which they were likely drawn. The distribution of genetic diversity and pattern of genetic differentiation suggest initial colonization of the Mediterranean from the Black-Azov Seas (pairwise F ST = 0.001–0.028). However, some haplotypes and alleles from the Mediterranean Sea were not detected from the well-sampled Black Sea, although they were found in Gulf of Mexico populations that were also genetically similar to those in the Mediterranean Sea (pairwise F ST = 0.010–0.032), raising the possibility of multiple invasion sources. Multiple introductions from a combination of Black Sea and native region sources could be facilitated by intense local and transcontinental shipping activity, respectively.  相似文献   

10.
A key aim of evolutionary biology – inferring the action of natural selection on wild species – can be achieved by comparing neutral genetic differentiation between populations (FST) with quantitative genetic variation (QST). Each of the three possible outcomes of comparisons of QST and FST (QST FST, QST FST, QST FST) is associated with an inference (diversifying selection, genetic drift, uniform selection, respectively). However, published empirical and theoretical studies have focused on the QST FST outcome. We believe that this reflects the absence of a straightforward biological interpretation of the QST < FST pattern. We here report recent evidence of this neglected evolutionary pattern, provide guidelines to its interpretation as either a canalization phenomenon or a consequence of uniform selection and discuss the significant importance this issue will have for the area of evolutionary biology.  相似文献   

11.
Nibea albiflora (yellow drum) is an important seafood fish species in East Asia. We explored the population genetic variation of N. albiflora along the coastal waters of the China Sea using microsatellite markers to facilitate a selective breeding programme that is undertaken in China. A total of 256 alleles were detected at 12 loci in four wild populations. A high level of genetic diversity was observed with the mean number of alleles and the observed and expected heterozygosity in each population ranging from 7.917 to 14.083, 0.701 to 0.764 and 0.765 to 0.841, respectively. Pairwise fixation index (FST) analysis indicated significant but weak genetic differentiation among populations from four localities (FST?=?0.030, P?<?0.01), which was also confirmed by analysis of molecular variance (AMOVA). Significant genetic differentiation was detected between Ningde and the other populations (FST?=?0.047–0.056, P?<?0.01). Structure analysis suggested that N. albiflora within the examined range might be composed of two stocks. The data of the present study revealed high genetic diversity and low genetic differentiation among the N. albiflora populations along the coast of the China Sea. This baseline information could be valuable for future selective breeding programmes of N. albiflora.  相似文献   

12.
The genetic variability of ten microsatellite loci was examined in samples of the herring from the Sea of Okhotsk and the Bering Sea. All loci were polymorphic; the expected heterozygosity estimates varied in the range of 0.3–94.3% (mean 66.7%). The degree of genetic differentiation of the herring was statistically significant (θ = 1.38%). The level of pairwise genetic differentiation FST was–0.002–0.046; RST was–0.003–0.166. Genetic differentiation of the herring from the Sea of Okhotsk and the Bering Sea correlated with the spatial-geographic structure of the species in the studied range on the basis of FST (P = 0.001).  相似文献   

13.
Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise F ST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish.  相似文献   

14.

Background  

Few models of genetic hitchhiking in subdivided populations have been developed and the rarity of empirical examples is even more striking. We here provide evidences of genetic hitchhiking in a subdivided population of the marine mussel Mytilus edulis. In the Bay of Biscay (France), a patch of M. edulis populations happens to be separated from its North Sea conspecifics by a wide region occupied only by the sister species M. galloprovincialis. Although genetic differentiation between the two M. edulis regions is largely non-significant at ten marker loci (average FST~0.007), a strong genetic differentiation is observed at a single locus (FST = 0.25). We validated the outlier status of this locus, and analysed DNA sequence polymorphism in order to identify the nature of the selection responsible for the unusual differentiation.  相似文献   

15.
Genetic variation was assessed in Atlantic wolffish, Anarhichas lupus, across the North Atlantic Ocean using microsatellite and amplified fragment length polymorphism (AFLP) markers. Despite unusual life history attributes such as large benthic eggs, large larvae, a limited pelagic stage and relatively sedentary adults, which suggest potential for strong population structure, range‐wide FST values were comparable to other marine fishes (≤0.035). Nevertheless, both significant genetic differentiation among regions and isolation by distance were observed, suggesting limited dispersal in this species. AFLP loci, evaluated on a subset of samples, revealed slightly higher FST values, but similar patterns of differentiation and isolation‐by‐distance estimates, compared to microsatellites. The genetic structure of Atlantic wolffish has likely been shaped by its post‐glacial history of recolonization, North Atlantic current patterns and continuity of habitat on continental shelves.  相似文献   

16.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

17.
Comparative analysis of variability of seven microsatellite loci—Gmo3, Gmo-G12, Gmo-G18, Gmo19, Gmo34, Gmo35 and Pgmo32—was performed for the Greenland cod Gadus ogac, Pacific cod G. macrocephalus, Atlantic cod G. morhua, and White Sea cod G. morhua marisalbi. High genetic identity was observed between the Greenland cod and Pacific cod (I = 0.9520). Pair analysis of genetic differentiation was performed on the studied microsatellite loci according to θ (analogue of F ST). The Greenland cod differed significantly from the Pacific, Atlantic, and the White Sea cod; however, the differentiation level varied. The lowest value was observed for the pair Greenland cod-Pacific cod (0.123), and the highest levels were registered for the pairs Greenland cod-Atlantic cod (0.605) and Greenland cod-White Sea cod (0.535).  相似文献   

18.
Variability of microsatellite DNA loci Gmo3, Gmo34, and Gmo35 is studied in samples of Pacific cod Gadus macrocephalus and Atlantic cod G. morhua. The results show high values of identity of the samples within the North Pacific basin (0.9766–0.9924) and within the Northeast Atlantic basin (0.9580). Based on the pairwise assessment of genetic differentiation, the F ST values are significantly different in all variants between the samples of Pacific and Atlantic cod (F ST = 0.5235–0.6719, p < 0.001). Within the basins, the significant differences in the frequencies of main alleles are revealed in the loci Gmo3 and Gmo34 for the samples from the Pacific and Atlantic oceans, respectively.  相似文献   

19.
The evidence for adaptive phenotypic differentiation in mobile marine species remains scarce, partly due to the difficulty of obtaining quantitative genetic data to demonstrate the genetic basis of the observed phenotypic differentiation. Using a combination of phenotypic and molecular genetic approaches, we elucidated the relative roles of natural selection and genetic drift in explaining lateral plate number differentiation in threespine sticklebacks (Gasterosteus aculeatus) across the entire Baltic Sea basin (approximately 392 000 km2). We found that phenotypic differentiation (PST = 0.213) in plate number exceeded that in neutral markers (FST = 0.008), suggesting an adaptive basis for the observed differentiation. Because a close correspondence was found between plate phenotype and genotype at a quantitative trait loci (QTL; STN381) tightly linked to the gene (Ectodysplasin) underlying plate variation, the evidence for adaptive differentiation was confirmed by comparison of FST at the QTL (FSTQ = 0.089) with FST at neutral marker loci. Hence, the results provide a comprehensive demonstration of adaptive phenotypic differentiation in a high‐gene‐flow marine environment with direct, rather than inferred, verification for the genetic basis of this differentiation. In general, the results illustrate the utility of PSTFSTFSTQ comparisons in uncovering footprints of natural selection and evolution and add to the growing evidence for adaptive genetic differentiation in high‐gene‐flow marine environments, including that of the relatively young Baltic Sea.  相似文献   

20.
Microsatellites were used to investigate population genetic structure of Atlantic bonito Sarda sarda from the Black Sea, Marmara Sea, Aegean Sea, north-eastern Mediterranean Sea and Adriatic Sea. Overall average observed heterozygosity was high (0.93). Average observed heterozygosity per locus ranged from 0.79 to 0.98. Pairwise FST estimates for all loci between populations ranged from 0 to 0.07626, and significant FST values (P < 0.001) were detected between populations; the Blacks Sea and Marmara Sea samples were not significantly different from each other, but significant different from the other samples, and Aegean Sea and north-eastern Mediterranean Sea samples were also not significantly different from each other, but significantly different from all other samples. The Adriatic Sea sample was significant different from all other samples. The Mantel test revealed a significant (P < 0.001, r = 0.68) isolation-by-distance for these 11 populations. Neighbour-joining analysis clustered the Black Sea and Marmara Sea samples together while collections from Aegean Sea and north-eastern Mediterranean Sea were clustered close to each other and far from the others. On the other hand, the Adriatic Sea collection presented very distinctive relationship from the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号