首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-d-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.  相似文献   

2.
Cardiac cell death is one of the major events implicated in doxorubicin‐induced cardiotoxicity, which leads to heart failure. We recently reported that Yes‐associated protein 1 (YAP1) regulates cell survival and apoptosis. However, it is unclear whether YAP1 regulates doxorubicin‐induced cell death in cardiomyocytes. We investigated whether YAP1 is involved in doxorubicin‐induced cell death using H9c2 cardiac cells and mouse heart. In an in vivo study, YAP1 protein expression was significantly decreased in hearts of doxorubicin‐treated mice with increased caspase‐3 activation. Doxorubicin also caused cell death by increasing caspase‐3 activation in H9c2 cells. Doxorubicin reduced YAP1 protein expression and messenger RNA expression accompanied by increased phosphorylation of YAP1 at Ser127. Doxorubicin further increased cell death with increased caspase‐3/7 activation in the absence of YAP1 when compared with doxorubicin or siYAP1 treatment alone. Overexpression of constitutively active YAP1 (YAP1–5SA) using an adenovirus gene transfer technique significantly reversed doxorubicin‐induced cell death by decreasing caspase‐3/7 activation in H9c2 cells. Akt, a potential prosurvival factor, decreased in doxorubicin‐ and YAP1 short interfering RNA (siRNA)‐treated cells. Doxorubicin further significantly decreased Akt protein expression when YAP1 was silenced. Overexpression of YAP1 canceled decreased Akt protein expression induced by doxorubicin treatment in H9c2 cells. In conclusion, these results suggest that doxorubicin‐induced cardiac cell death is mediated in part by down‐regulation of YAP1 and YAP1‐targeted gene, Akt. Modulating YAP1 and its related Hippo pathway on local cardiomyocytes may be a promising therapeutic approach for doxorubicin‐induced cardiotoxicity.  相似文献   

3.
4.
Doxorubicin, an anthracycline antibiotic, is widely used in cancer treatment. Doxorubicin produces genotoxic stress and p53 activation in both carcinoma and non-carcinoma cells. Although its side effects in non-carcinoma cells, especially in heart tissue, are well known, the molecular targets of doxorubicin are poorly characterized. Here, we report that doxorubicin inhibits AMP-activated protein kinase (AMPK) resulting in SIRT1 dysfunction and p53 accumulation. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) or H9C2 cardiomyocyte were exposed to doxorubicin at different doses and durations. Cell death and p53, SIRT1, and AMPK levels were examined by Western blot. In MEFs, doxorubicin inhibited AMPK activation, increased cell death, and induced robust p53 accumulation. Genetic deletion of AMPKα1 reduced NAD(+) levels and SIRT1 activity and significantly increased the levels of p53 and cell death. Pre-activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside or transfection with an adenovirus encoding a constitutively active AMPK (AMPK-CA) markedly reduced the effects of doxorubicin in MEFs from Ampkα1 knock-out mice. Conversely, pre-inhibition of Ampk further sensitized MEFs to doxorubicin-induced cell death. Genetic knockdown of p53 protected both wild-type and Ampkα1(-/-) MEFs from doxorubicin-induced cell death. p53 accumulation in Ampkα1(-/-) MEFs was reversed by SIRT1 activation by resveratrol. Taken together, these data suggest that AMPK inhibition by doxorubicin causes p53 accumulation and SIRT1 dysfunction in MEFs and further suggest that pharmacological activation of AMPK might alleviate the side effects of doxorubicin.  相似文献   

5.
Resveratrol, one of polyphenols derived from red wine, has been shown to protect against cell death, possibly through the association with several signaling pathways. Currently numerous studies indicate that cardiovascular diseases are linked to the release of intracellular reactive oxygen species (ROS) often generated in states such as ischemia/reperfusion injury. In the present study, we investigated whether resveratrol has the capability to control intracellular survival signaling cascades involving AMP-activated kinase (AMPK) in the inhibitory process of cardiac injury. We hypothesized that resveratrol may exert a protective effect on damage to heart muscle through modulating of the AMPK signaling pathway. We mimicked ischemic conditions by inducing cell death with H(2)O(2) in H9c2 muscle cells. In this experiment, resveratrol induced strong activation of AMPK and inhibited the occurrence of cell death caused by treatment with H(2)O(2). Under the same conditions, inhibition of AMPK using dominant negative AMPK constructs dramatically abolished the effect of resveratrol on cell survival in H(2)O(2)-treated cardiac muscle cells. These results indicate that resveratrol-induced cell survival is mediated by AMPK in H9c2 cells and may exert a novel therapeutic effect on oxidative stress induced in cardiac disorders.  相似文献   

6.
The metabolic actions of the antidiabetic agent metformin reportedly occur via the activation of the AMP-activated protein kinase (AMPK) in the heart and other tissues in the presence or absence of changes in cellular energy status. In this study, we tested the hypothesis that metformin has AMPK-independent effects on metabolism in heart muscle. Fatty acid oxidation and glucose utilization (glycolysis and glucose uptake) were measured in isolated working hearts from halothane-anesthetized male Sprague-Dawley rats and in cultured heart-derived H9c2 cells in the absence or in the presence of metformin (2 mM). Fatty acid oxidation and glucose utilization were significantly altered by metformin in hearts and H9c2 cells. AMPK activity was not measurably altered by metformin in either model system, and no impairment of energetic state was observed in the intact hearts. Furthermore, the inhibition of AMPK by 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine (Compound C), a well-recognized pharmacological inhibitor of AMPK, or the overexpression of a dominant-negative form of AMPK failed to prevent the metabolic actions of metformin in H9c2 cells. The exposure of H9c2 cells to inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) or protein kinase C (PKC) partially or completely abrogated metformin-induced alterations in metabolism in these cells, respectively. Thus the metabolic actions of metformin in the heart muscle can occur independent of changes in AMPK activity and may be mediated by p38 MAPK- and PKC-dependent mechanisms.  相似文献   

7.
Apelin is an endogenous peptide hormone recently implicated in glucose homeostasis. However, whether apelin affects glucose uptake in myocardial tissue remains undetermined. In this study, we utilized in vivo, ex vivo and in vitro methods to study apelin's effect on myocardial glucose uptake. Pyroglutamated apelin-13 (2 mg/kg/day) was administered to C57BL6/J mice for 7 days. In vivo myocardial glucose uptake was measured by FDG-PET scanning, and GLUT4 translocation was assessed by immunofluorescence imaging. For in vitro studies, differentiated H9C2 cardiomyoblasts were exposed to pyroglutamated apelin-13 (100 nM) for 2 h. To test their involvement in apelin-stimulated myocardial glucose uptake, the energy sensing protein kinase AMPK were inhibited by pharmacologic inhibition (compound C) and RNA interference. IRS-1 phosphorylation was assessed by western blotting using an antibody directed against IRS-1 Ser-789-phosphorylated form. We found that apelin increased myocardial glucose uptake and GLUT4 membrane translocation in C57BL6/J mice. Apelin was also sufficient to increase glucose uptake in H9C2 cells. Apelin-mediated glucose uptake was significantly decreased by AMPK inhibition. Finally, apelin increased IRS-1 Ser-789 phosphorylation in an AMPK-dependent manner. The results of our study demonstrated that apelin increases myocardial glucose uptake through a pathway involving AMPK. Apelin also facilitates IRS-1 Ser-789 phosphorylation, suggesting a novel mechanism for its effects on glucose uptake.  相似文献   

8.
The aim of this current study is to investigate the potential role of AMP-activated protein kinase (AMPK) in hydrogen peroxide (H2O2)-induced cardiomyocyte death, and focused on the signaling mechanisms of AMPK activation by H2O2. We observed a significant AMPK activation in H2O2-treated cardiomyocytes (both primary cells and H9c2 line). Inhibition of AMPK by its inhibitor or RNAi-reduced H2O2-induced cardiomyocyte death. We here proposed that transforming growth factor-β-activating kinase 1 (TAK1) might be the upstream kinase for AMPK activation by H2O2. H2O2-induced TAK1 activation, which recruited and activated AMPK. TAK1 inhibitor significantly suppressed H2O2-induced AMPK activation and following cardiomyocyte death, while over-expression of TAK1-facilitated AMPK activation and aggregated cardiomyocyte death. Importantly, heat shock protein-70 (HSP-70)-reduced H2O2-induced reactive oxygen species (ROS) accumulation, the TAK1/AMPK activation and cardiomyocyte death. In conclusion, we here suggest that TAK1 activates AMPK-dependent cell death pathway in H2O2-treated cardiomyocytes, and HSP-70 inhibits the signaling pathway by reducing ROS content.  相似文献   

9.
The responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment. At the same time, isoproterenol stimulated the phosphorylation of AMPKα catalytic subunits (Thr172), that was associated to an increase in acetyl coenzyme A carboxylase (Ser72) phosphorylation. Downregulation of both α1 and α2 isoforms of the AMPK catalytic subunit by siRNA to knockdown AMPK enzymatic activity, led to superinduction of ODC in isoproterenol-treated cardiomyoblasts. Downregulation of AMPKα increased ODC activity even in cells treated with other adrenergic agonists and in control cells. Analogue results were obtained in SH-SY5Y neuroblastoma cells transfected with a shRNA construct against AMPKα. In conclusion, isoproterenol quickly activates in H9c2 cardiomyoblasts two events that seem to contrast one another. The first one, an increase in ODC activity, is linked to cell growth, whereas the second, AMPK activation, is a homeostatic mechanism that negatively modulates the first. The modulation of ODC activity by AMPK represents a mechanism that may contribute to control cell growth processes.  相似文献   

10.
Rationale: Myocardial ischemia/reperfusion (I/R) injury is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction (AMI). The mitochondrial F1Fo-ATPase inhibitory factor 1 (IF1) blocks the reversal of the F1Fo-ATP synthase to prevent detrimental consumption of cellular ATP and associated demise. In the present study, we study the role and mechanism of IF1 in myocardial I/R injury.Methods: Mice were ligated the left anterior descending coronary artery to build the I/R model in vivo. Rat hearts were isolated and perfused with constant pressure according to Langendorff. Also, neonatal cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, cellular function, and cell viability was conducted and compared.Results: Our data revealed that IF1 is upregulated in hearts after I/R and cardiomyocytes with hypoxia/re-oxygenation (H/R). IF1 delivered with adenovirus and adeno-associated virus serotype 9 (AAV9) ameliorated cardiac dysfunction and pathological development induced by I/R ex vivo and in vivo. Mechanistically, IF1 stimulates glucose uptake and glycolysis activity and stimulates AMPK activation during in vivo basal and I/R and in vitro OGD/R conditions, and activation of AMPK by IF1 is responsible for its cardioprotective effects against H/R-induced injury.Conclusions: These results suggest that increased IF1 in the I/R heart confer cardioprotective effects via activating AMPK signaling. Therefore, IF1 can be used as a potential therapeutic target for the treatment of pathological ischemic injury and heart failure.  相似文献   

11.
AMP-activated protein kinase (AMPK) performs a pivotal function in energy homeostasis via the monitoring of intracellular energy status. Once activated under the various metabolic stress conditions, AMPK regulates a multitude of metabolic pathways to balance cellular energy. In addition, AMPK also induces cell cycle arrest or apoptosis through several tumor suppressors including LKB1, TSC2, and p53. LKB1 is a direct upstream kinase of AMPK, while TSC2 and p53 are direct substrates of AMPK. Therefore, it is expected that activators of AMPK signal pathway might be useful for treatment or prevention of cancer. In the present study, we report that cryptotanshinone, a natural compound isolated from Salvia miltiorrhiza, robustly activated AMPK signaling pathway, including LKB1, p53, TSC2, thereby leading to suppression of mTORC1 in a number of LKB1-expressing cancer cells including HepG2 human hepatoma, but not in LKB1-deficient cancer cells. Cryptotanshinone induced HepG2 cell cycle arrest at the G1 phase in an AMPK-dependent manner, and a portion of cells underwent apoptosis as a result of long-term treatment. It also induced autophagic HepG2 cell death in an AMPK-dependent manner. Cryptotanshinone significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model, with a substantial activation of AMPK signal pathways. Collectively, we demonstrate for the first time that cryptotanshinone harbors the therapeutic potential for the treatment of cancer through AMPK activation.  相似文献   

12.
Summary Background and objective Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of calcineurin signaling pathway in P.␣gingivalis-induced H9c2 myocardial cell hypertrophy and apoptosis. Methods DNA fragmentation, nuclear condensation, cellular morphology, calcineurin protein, Bcl2-associated death promoter (Bad) and nuclear factor of activated T cell (NFAT)-3 protein products in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, DAPI, immunofluorescence, and Western blotting following P.␣gingivalis and/or pre-administration of CsA (calcineurin inhibitors cyclosporin A). Results P. gingivalis not only increased calcineurin protein, NFAT-3 protein products and cellular hypertrophy, but also increased DNA fragmentation, nuclear condensation and Bad protein products in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, and Bad of H9c2 cells treated with P. gingivalis were all significantly reduced after pre-administration of CsA. Conclusion Our findings suggest that the activity of calcineurin signal pathway may be initiated by P. gingivalis and further lead to cell hypertrophy and death in culture H9c2 myocardial cells. Supported by the National Science Council, Taiwan  相似文献   

13.
Autophagy, a self-eating process, is responsible for degradation of long-lived proteins and damaged cellular proteins/organelles. Double-membrane autophagosomes, formed during the process, engulf proteins/organelles and fuse with lysosomes to degrade the contents. It is important to maintain cell homeostasis and many physiological processes including cellular responses to oxidative stress. Oxidative stress induced by myocardial infarction is a major factor of heart failures. In this study, we examined how propofol modulates hydrogen peroxide (H2O2)-induced autophagic cell death in H9c2 cardiomyocytes. H2O2 dramatically induced cell death, which was similarly reduced in the presence of either propofol or autophagy inhibitors (e.g., wortmannin), suggesting that propofol has a protective effect in H2O2-induced autophagic cell death. Acidic autophagic vacuoles were elevated in H2O2-treated H9c2 cells, but they were largely decreased in the presence of propofol. Furthermore, many autophagy-related proteins such as LC3-II, ATG proteins, p62, AMPK, and JNK were activated in H2O2-treated H9c2 cells and were significantly deactivated in the presence of propofol. These results show that propofol regulates oxidative stress-induced autophagic cell death in cardiomyocytes. We further suggest that propofol can act as a cardioprotectant in heart diseases.  相似文献   

14.
Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumors including malignant glioblastoma. The mechanism of TMZ-induced glioblastoma cell death and apoptosis, however, is not fully understood. Here, we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found that methylating agents TMZ and N-methyl-N'-nitro-N-nitrosoguanidine induce AMPK activation in primary cultured human glioblastoma and glioblastoma cell lines. TMZ-induced O(6)-methylguanine production is involved in AMPK activation. O(6)-benzylguanine, an O(6)-methylguanine-DNA methyltransferase inhibitor, enhances TMZ-induced O(6)-methylguanine production, leading to enhanced reactive oxygen species production, which serves as an upstream signal for AMPK activation. Activation of AMPK is involved in TMZ-induced glioblastoma cell death and apoptosis. AMPK inhibitor (Compound C) or AMPKα siRNA knockdown inhibits TMZ-induced glioblastoma cell death and apoptosis, whereas AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside enhances it. In further studies, we found that activation of AMPK is involved in TMZ-induced p53 activation and subsequent p21, Noxa, and Bax up-regulation. Activation of AMPK by TMZ also inhibits mTOR complex 1 (mTORC1) signaling and promotes anti-apoptosis protein Bcl-2 down-regulation, which together mediate TMZ-induced pro-cell apoptosis effects. Our study suggests that activation of AMPK by TMZ contributes to glioblastoma cell apoptosis, probably by promoting p53 activation and inhibiting mTORC1 signaling.  相似文献   

15.
Cardiovascular diseases such as myocardial ischaemia have a high fatality rate in patients with diabetes. This study was designed to expose the crosstalk between oxidative stress and AMPK, a vital molecule that controls biological energy metabolism, in myocardial ischaemia reperfusion injury (I/RI) in diabetic rats. Diabetes was stimulated in rats using streptozotocin injection. Rats were separated on random into control, control + I/R, Diabetes, Diabetes + I/R, Diabetes + I/R + N‐acetylcysteine and Diabetes + I/R + Vas2870 groups. Myocardial infarct size was determined, and the predominant Nox family isoforms were analysed. In vitro, the H9C2 cells were administered excess glucose and exposed to hypoxia/reoxygenation to mimic diabetes and I/R. The AMPK siRNA or AICAR was used to inhibit or activate AMPK expression in H9C2 cells, respectively. Then, myocardial oxidative stress and programmed cell death were measured. Diabetes or high glucose levels were found to aggravate myocardial I/RI or hypoxia/reoxygenation in H9C2 cells, as demonstrated by an increase in myocardial infarct size or lactate dehydrogenase levels, oxidative stress generation and induction of programmed cell death. In diabetic rat hearts, cardiac Nox1, Nox2 and Nox4 were all heightened. The suppression of Nox2 expression using Vas2870 or Nox2‐siRNA treatment in vivo or in vitro, respectively, protected diabetic rats from myocardial I/RI. AMPK gene knockout increased Nox2 protein expression while AMPK agonist decreased Nox2 expression. Therefore, diabetes aggravates myocardial I/RI by generating of Nox2‐associated oxidative stress in an AMPK‐dependent manner, which led to the induction of programmed cell death such as apoptosis, pyroptosis and ferroptosis.  相似文献   

16.
AMP-activated protein kinase or AMPK is an evolutionarily conserved sensor of cellular energy status, activated by a variety of cellular stresses that deplete ATP. However, the possible involvement of AMPK in UV- and H(2)O(2)-induced oxidative stresses that lead to skin aging or skin cancer has not been fully studied. We demonstrated for the first time that UV and H(2)O(2) induce AMPK activation (Thr(172) phosphorylation) in cultured human skin keratinocytes. UV and H(2)O(2) also phosphorylate LKB1, an upstream signal of AMPK, in an epidermal growth factor receptor-dependent manner. Using compound C, a specific inhibitor of AMPK and AMPK-specific small interfering RNA knockdown as well as AMPK activator, we found that AMPK serves as a positive regulator for p38 and p53 (Ser(15)) phosphorylation induced by UV radiation and H(2)O(2) treatment. We also observed that AMPK serves as a negative feedback signal against UV-induced mTOR (mammalian target of rapamycin) activation in a TSC2-dependent manner. Inhibiting mTOR and positively regulating p53 and p38 might contribute to the pro-apoptotic effect of AMPK on UV- or H(2)O(2)-treated cells. Furthermore, activation of AMPK also phosphorylates acetyl-CoA carboxylase or ACC, the pivotal enzyme of fatty acid synthesis, and PFK2, the key protein of glycolysis in UV-radiated cells. Collectively, we conclude that AMPK contributes to UV- and H(2)O(2)-induced apoptosis via multiple mechanisms in human skin keratinocytes and AMPK plays important roles in UV-induced signal transduction ultimately leading to skin photoaging and even skin cancer.  相似文献   

17.
Cumulative doses of doxorubicin, a potent anticancer drug, lead to serious myocardial dysfunction. Numerous mechanisms including apoptosis have been proposed to account for its cardiotoxicity. Cardiac apoptosis induced by doxorubicin has been related to excessive reactive oxygen species production by the mitochondrial NADH dehydrogenase. Here, we explored whether doxorubicin treatment activates other superoxide anion generating systems such as the NADPH oxidases, membrane-embedded flavin-containing enzymes, and whether the subsequent oxidative stress contributes to apoptosis. We showed that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis. Doxorubicin exposure also leads to a rapid superoxide production through NADPH oxidase activation. Inhibition of these enzymes using diphenyliodonium and apocynin reduces doxorubicin-induced reactive oxygen species production, caspase-3 like activity and sub-G1 cell population. In conclusion, NADPH oxidases participate to doxorubicin-induced cardiac apoptosis.  相似文献   

18.
Ischemia-reperfusion injury in the heart results in enhanced production of H2O2 and activation of AMP-activated protein kinase (AMPK). Since mutations in AMPK result in cardiovascular dysfunction, we investigated whether the activation of AMPK mediates the H2O2-induced reduction in cardiac mechanical function. Isolated working rat hearts were perfused at 37 degrees C with Krebs-Henseleit solution. Following a 20-minute equilibration period, a single bolus of H2O2 (300 micromol/L) was added and the hearts were perfused for an additional 5 min. H2O2 induced a dramatic and progressive reduction in cardiac function. This was accompanied by rapid and significant activation of AMPK, an increase in Thr-172 phosphorylation of AMPK, and an increase in the creatine to phosphocreatine (Cr/PCr) ratio. Addition of pyruvate (5 mmol/L) to the perfusate prevented the H2O2-mediated reduction in cardiac mechanical dysfunction, activation of myocardial AMPK activity, increase in AMPK phosphorylation and the increase in the Cr/PCr ratio. Hearts challenged with H2O2 (300 micromol/L) in presence of either AMPK inhibitor Compound C (10 micromol/L) or its vehicle (dimethyl sulfoxide (DMSO), 0.1%) showed reduced impairment in cardiac mechanical function. Compound C but not its vehicle significantly inhibited myocardial AMPK activity. Thus, H2O2 induces cardiac dysfunction via both AMPK-dependent and independent mechanisms.  相似文献   

19.
Helicobacter pylori (H pylori), infecting half of the world’s population, causes gastritis, duodenal and gastric ulcer, and gastric cancers. AMP-activated protein kinase (AMPK) is a highly conserved regulator of cellular energy and metabolism. Recent studies indicated an important role for AMPK in promoting cell survival. In this study, we discovered that H Pylori induced AMPK activation in transformed (GEC-1 line) and primary human gastric epithelial cells (GECs). Inhibition of H Pylori-stimulated AMPK kinase activity by AMPK inhibitor compound C exacerbated apoptosis in transformed and primary GECs. Meanwhile, downregulation of AMPK expression by targeted shRNAs promoted apoptosis in H pylori-infected GECs. In contrast, A-769662 and resveratrol, two known AMPK activators, or AMPKα1 over-expression, enhanced H Pylori-induced AMPK activation, and inhibited GEC apoptosis. Our data suggested that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) could be the upstream kinase for AMPK activation by H pylori. Partial depletion of TAK1 by shRNAs not only inhibited AMPK activation, but also suppressed survival of H pylori-infected GECs. Taken together, these results suggest that TAK1-dependent AMPK activation protects GECs from H pylori-Induced apoptosis.  相似文献   

20.
Uric acid crystal is known to activate the NLRP3 inflammasome and to cause tissue damages, which can result in many diseases, such as gout, chronic renal injury and myocardial damage. Meanwhile, soluble uric acid (sUA), before forming crystals, is also related to these diseases. This study was carried out to investigate whether sUA could also activate NLRP3 inflammasome in cardiomyocytes and to analyse the mechanisms. The cardiomyocyte activity was monitored, along with the levels of mature IL‐1β and caspase‐1 from H9c2 cells following sUA stimulus. We found that sUA was able to activate NLRP3 inflammasome, which was responsible for H9c2 cell apoptosis induced by sUA. By elevating TLR6 levels and then activating NF‐κB/p65 signal pathway, sUA promoted NLRP3, pro‐caspase 1 and pro‐IL‐1β production and provided the first signal of NLRP3 inflammasome activation. Meanwhile, ROS production regulated by UCP2 levels also contributed to NLRP3 inflammasome assembly and subsequent caspase 1 activation and mature IL‐1β secretion. In addition, the tlr6 knockdown rats suffering from hyperuricemia showed the lower level of IL‐1β and an ameliorative cardiac function. These findings suggest that sUA activates NLRP3 inflammasome in cardiomyocytes and they may provide one therapeutic strategy for myocardial damage induced by sUA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号