首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The Cu,Zn superoxide dismutase from Haemophilus ducreyi is characterized by the unique ability to bind heme at its dimer interface. Here we report the high-resolution crystal structures of this protein in the heme-loaded (holo) and heme-free (apo) forms. Heme is asymmetrically bound between the two enzyme subunits, where heme iron is coordinated by two histidine residues, His64 and His 124, provided by the two subunits. Moreover, the binding of heme to the protein is ensured by stabilizing contacts between the prosthetic group and a limited number of other residues, most of which are not present in other bacterial enzyme variants. We show that the introduction of only three mutations at the dimer interface of the enzyme from Haemophilus parainfluenzae, a closely related bacterial species, is sufficient to induce heme-binding ability by this enzyme variant. Heme binding does not alter protein activity. Moreover, the binding of the prosthetic group does not induce any significant structural perturbation at the subunit level and requires only limited local structural rearrangements that widen the cleft at the dimer interface and cause a limited shift in the relative orientation between the subunits. The presence of a preformed heme-binding pocket and the significant solvent exposure of the cofactor to the solvent are compatible with the suggested protective role of the enzyme against heme toxicity or with its involvement in heme trafficking in the periplasmic space.  相似文献   

3.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

4.
The crystal structure of the fully oxidized di-heme peroxidase from Nitrosomonas europaea has been solved to a resolution of 1.80 A and compared to the closely related enzyme from Pseudomonas aeruginosa. Both enzymes catalyze the peroxide-dependent oxidation of a protein electron donor such as cytochrome c. Electrons enter the enzyme through the high-potential heme followed by electron transfer to the low-potential heme, the site of peroxide activation. Both enzymes form homodimers, each of which folds into two distinct heme domains. Each heme is held in place by thioether bonds between the heme vinyl groups and Cys residues. The high-potential heme in both enzymes has Met and His as axial heme ligands. In the Pseudomonas enzyme, the low-potential heme has two His residues as axial heme ligands [Fulop et al. (1995) Structure 3, 1225-1233]. Since the site of reaction with peroxide is the low-potential heme, then one His ligand must first dissociate. In sharp contrast, the low-potential heme in the Nitrosomonas enzyme already is in the "activated" state with only one His ligand and an open distal axial ligation position available for reaction with peroxide. A comparison between the two enzymes illustrates the range of conformational changes required to activate the Pseudomonas enzyme. This change involves a large motion of a loop containing the dissociable His ligand from the heme pocket to the molecular surface where it forms part of the dimer interface. Since the Nitrosomonas enzyme is in the active state, the structure provides some insights on residues involved in peroxide activation. Most importantly, a Glu residue situated near the peroxide binding site could possibly serve as an acid-base catalytic group required for cleavage of the peroxide O--O bond.  相似文献   

5.
Dehaloperoxidase-hemoglobin (DHP) is a unique multifunctional enzyme with a globin fold. The enzyme serves as the respiratory hemoglobin for the marine worm Amphitrite ornata and has been shown to catalyze the conversion of highly toxic trihalophenols to dihaloquinones as a detoxification function for the organism. Given the simplicity of the structure of A. ornata, it is entirely possible that DHP may play an even more general role in detoxification of the organism from sulfide commonly found in the coastal estuaries where A. ornata thrives. Comparison of DHP with other sulfide-binding hemoglobins shows that DHP possesses several distal cavity structural properties, such as an aromatic cage and a hydrogen-bond-donor amino acid (His55), that facilitate sulfide binding. Furthermore, a complete reduction of the ferric heme occurs after sulfide exposure under aerobic or anaerobic conditions to yield either the oxy or the deoxy ferrous states of DHP, respectively. Oxidation of sulfide by the heme leads to sulfur products that are less toxic to A. ornata. This proposed new function for DHP relies on the highly flexible distal His55 for deprotonation of the bound hydrogen sulfide, similar to H2O2 activation of the peroxidase function, and provides further support for the importance of the flexibility of the distal His55 in this novel globin.  相似文献   

6.
Lactoperoxidase (LPO) is a member of the mammalian peroxidase superfamily. It catalyzes the oxidation of thiocyanate and halides. Freshly isolated and purified samples of caprine LPO were saturated with ammonium iodide and crystallized using 20% polyethylene glycol 3350 in a hanging drop vapor diffusion setup. The structure has been determined using X-ray crystallographic method and refined to Rcryst and Rfree factors of 0.196 and 0.203, respectively. The structure determination revealed an unexpected phosphorylation of Ser198 in LPO, which is also confirmed by anti-phosphoserine antibody binding studies. The structure is also notable for observing densities for glycan chains at all the four potential glycosylation sites. Caprine LPO consists of a single polypeptide chain of 595 amino acid residues and folds into an oval-shaped structure. The structure contains 20 well-defined α-helices of varying lengths including a helix, H2a, unique to LPO, and two short antiparallel β-strands. The structure confirms that the heme group is covalently linked to the protein through two ester linkages involving carboxylic groups of Glu258 and Asp108 and modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is slightly distorted from planarity, but pyrrole ring B is distorted considerably. However, an iron atom is displaced only by 0.1 Å from the plane of the heme group toward the proximal site. The substrate diffusing channel in LPO is cylindrical in shape with a diameter of approximately 6 Å. Two histidine residues and six buried water molecules are connected through a hydrogen-bonded chain from the distal heme cavity to the surface of protein molecule and seemingly form the basis of proton relay for catalytic action. Ten iodide ions have been observed in the structure. Out of these, only one iodide ion is located in the distal heme cavity and is hydrogen bonded to the water molecule W1. W1 is also hydrogen bonded to the heme iron as well as to distal His109. The structure contains a calcium ion that is coordinated to seven oxygen atoms and forms a typical pentagonal bipyramidal coordination geometry.  相似文献   

7.
Horseradish peroxidase C (HRPC) binds 2 mol calcium per mol of enzyme with binding sites located distal and proximal to the heme group. The effect of calcium depletion on the conformation of the heme was investigated by combining polarized resonance Raman dispersion spectroscopy with normal coordinate structural decomposition analysis of the hemes extracted from models of Ca(2+)-bound and Ca(2+)-depleted HRPC generated and equilibrated using molecular dynamics simulations. Results show that calcium removal causes reorientation of heme pocket residues. We propose that these rearrangements significantly affect both the in-plane and out-of-plane deformations of the heme. Analysis of the experimental depolarization ratios are clearly consistent with increased B(1g)- and B(2g)-type distortions in the Ca(2+)-depleted species while the normal coordinate structural decomposition results are indicative of increased planarity for the heme of Ca(2+)-depleted HRPC and of significant changes in the relative contributions of three of the six lowest frequency deformations. Most noteworthy is the decrease of the strong saddling deformation that is typical of all peroxidases, and an increase in ruffling. Our results confirm previous work proposing that calcium is required to maintain the structural integrity of the heme in that we show that the preferred geometry for catalysis is lost upon calcium depletion.  相似文献   

8.
l-Gulonate 3-dehydrogenase (GDH) is a bifunctional dimeric protein that functions not only as an NAD+-dependent enzyme in the uronate cycle but also as a taxon-specific λ-crystallin in rabbit lens. Here we report the first crystal structure of GDH in both apo form and NADH-bound holo form. The GDH protomer consists of two structural domains: the N-terminal domain with a Rossmann fold and the C-terminal domain with a novel helical fold. In the N-terminal domain of the NADH-bound structure, we identified 11 coenzyme-binding residues and found 2 distinct side-chain conformers of Ser124, which is a putative coenzyme/substrate-binding residue. A structural comparison between apo form and holo form and a mutagenesis study with E97Q mutant suggest an induced-fit mechanism upon coenzyme binding; coenzyme binding induces a conformational change in the coenzyme-binding residues Glu97 and Ser124 to switch their activation state from resting to active, which is required for the subsequent substrate recruitment. Subunit dimerization is mediated by numerous intersubunit interactions, including 22 hydrogen bonds and 104 residue pairs of van der Waals interactions, of which those between two cognate C-terminal domains are predominant. From a structure/sequence comparison within GDH homologues, a much greater degree of interprotomer interactions (both polar and hydrophobic) in the rabbit GDH would contribute to its higher thermostability, which may be relevant to the other function of this enzyme as λ-crystallin, a constitutive structural protein in rabbit lens. The present crystal structures and amino acid mutagenesis studies assigned the role of active-site residues: catalytic base for His145 and substrate binding for Ser124, Cys125, Asn196, and Arg231. Notably, Arg231 participates in substrate binding from the other subunit of the GDH dimer, indicating the functional significance of the dimeric state. Proper orientation of the substrate-binding residues for catalysis is likely to be maintained by an interprotomer hydrogen-bonding network of residues Asn196, Gln199, and Arg231, suggesting a network-based substrate recognition of GDH.  相似文献   

9.
Serine protease proteinase K, a member of the subtilisin family of enzymes, is of significant industrial, agricultural and biotechnological importance. Despite the wealth of structural information about proteinase K provided by static X-ray structures, a full understanding of the enzymatic mechanism requires further insight into the dynamic properties of this enzyme. Molecular dynamics simulations and essential dynamics (ED) analysis were performed to investigate the molecular motions in proteinase K. The results indicate that the internal core of proteinase K is relatively rigid, whereas the surface-exposed loops, most notably the substrate-binding regions, exhibit considerable conformational fluctuations. Further ED analysis reveals that the large concerted motions in the substrate-binding regions cause opening/closing of the substrate-binding pockets, thus supporting the proposed induced-fit mechanism of substrate binding. The distinct electrostatic/hydrogen-bonding interactions between Asp39 and His69 and between His69 and Ser224 within the catalytic triad lead to different thermal motions and orientations of these three catalytic residues, which can be related to their different functional roles in the catalytic process. Statistical analyses of the geometrical/functional properties as well as evolutionary conservation of the glycines in proteinase K-like proteins reveal that glycines may play an important role in determining the folding architecture and structural flexibility of this class of enzymes. Our simulation study complements the biochemical and structural studies and provides new insights into the dynamic structural basis of the functional properties of this class of enzymes.  相似文献   

10.
Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn2+ and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s−1 mm−1, respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s−1 mm−1 for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower Km values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor.  相似文献   

11.
Hemoglobins (Hbs) reversibly bind gaseous diatomic ligands (e.g., O2) as the sixth heme axial ligand of the penta-coordinate deoxygenated form. Selected members of the Hb superfamily, however, display a functionally relevant hexa-coordinate heme Fe atom in their deoxygenated state. Endogenous heme hexa-coordination is generally provided in these Hbs by the E7 residue (often His), which thus modulates accessibility to the heme distal pocket and reactivity of the heme toward exogenous ligands. Such a pivotal role of the E7 residue is prominently shown by analysis of the functional and structural properties of insect Hbs. Here, we report the 2.6 A crystal structure of oxygenated Gasterophilus intestinalis Hb1, a Hb known to display a penta-coordinate heme in the deoxygenated form. The structure is analyzed in comparison with those of Drosophila melanogaster Hb, exhibiting a hexa-coordinate heme in its deoxygenated derivative, and of Chironomus thummi thummi HbIII, which displays a penta-coordinate heme in the deoxygenated form. Despite evident structural differences in the heme distal pockets, the distinct molecular mechanisms regulating O2 binding to the three insect Hbs result in similar O(2 affinities (P50 values ranging between 0.12 torr and 0.46 torr).  相似文献   

12.
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H2O2, and organic solvents. Thus, RPTP is a promising candidate for developing H2O2-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 Å. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP.  相似文献   

13.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   

15.
Circular dichroism, nuclear magnetic resonance, electron paramagnetic resonance, UV-vis absorption, and resonance Raman (RR) spectroscopic techniques were employed to study protein and heme structural changes of cytochrome c (Cyt-c) induced by sodium dodecyl sulfate (SDS) monomers and micelles via hydrophobic and electrostatic interactions, respectively. Both modes of interactions cause the transition to the conformational state B2, which is implicated to be involved in the physiological processes of Cyt-c. At sub-micellar concentrations of SDS, specific binding of only ca. three SDS monomers, which is likely to occur at the hydrophobic peptide segment 81–85, is sufficient for a complete conversion to a B2 state in which Met80 is replaced by His33 (His26). These heme pocket structural changes are not linked to secondary structure changes of the protein brought about by nonspecific binding of SDS monomers in different regions of the protein. Upon binding of micelles, B2 high-spin species can also be stabilized by electrostatic interactions. In addition, the micelle interaction domain is located on the front surface of Cyt-c, which includes a ring-like arrangement of lysine residues appropriate for binding one micelle. According to freeze-quench RR and stopped-flow experiments, state B2 is formed on the long millisecond timescale and reveals a complex dependence on the SDS concentration that can be interpreted in terms of competitive binding of monomers and micelles.  相似文献   

16.
X Wang  Y Lu 《Biochemistry》1999,38(28):9146-9157
The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely.  相似文献   

17.
Shigella dysentriae and other Gram‐negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB‐dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C‐terminal domain that folds into a 22‐stranded transmembrane β‐barrel, which is filled by the N‐terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA‐Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N‐terminal TonB‐box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB‐box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB‐box. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
血红素氧合酶HugZ是幽门螺旋杆菌(Helicobacter pylori)利用宿主血红素作为铁源的关键蛋白.HugZ的His245残基侧链咪唑基与血红素中心铁配位结合,是酶活中心的重要组成部分.用定点突变的方法构建HugZ突变体H245A、H249A和H245A/H249A基因,并将突变体蛋白表达纯化.通过X射线晶体学途径解析了突变体H245A与血红素复合物的2.55Å分辨率晶体结构.结构解析表明,HugZ的His249残基侧链咪唑基团与血红素的铁原子结合,从而补偿了His245侧链缺失.这种结构特征在已知血红素氧合酶中未曾发现.Val238 ψ平面的可翻转和Gly239的柔性是His249能与血红素配位结合的关键原因,二者的共同作用改变了C端肽链的走向,使Val238与His249之间的柔性回折与α1螺旋的相互作用发生解离,并向远离血红素的方向伸展.HugZ蛋白与血红素结合的光谱实验证明HugZ柔性C端上的组氨酸残基有利于HugZ与血红素的结合.研究结果表明,含多个组氨酸残基柔性C端的存在有利于血红素氧合酶HugZ结合和分解血红素.  相似文献   

19.
The active site of heme catalases is buried deep inside a structurally highly conserved homotetramer. Channels leading to the active site have been identified as potential routes for substrate flow and product release, although evidence in support of this model is limited. To investigate further the role of protein structure and molecular channels in catalysis, the crystal structures of four active site variants of catalase HPII from Escherichia coli (His128Ala, His128Asn, Asn201Ala, and Asn201His) have been determined at approximately 2.0-A resolution. The solvent organization shows major rearrangements with respect to native HPII, not only in the vicinity of the replaced residues but also in the main molecular channel leading to the heme distal pocket. In the two inactive His128 variants, continuous chains of hydrogen bonded water molecules extend from the molecular surface to the heme distal pocket filling the main channel. The differences in continuity of solvent molecules between the native and variant structures illustrate how sensitive the solvent matrix is to subtle changes in structure. It is hypothesized that the slightly larger H(2)O(2) passing through the channel of the native enzyme will promote the formation of a continuous chain of solvent and peroxide. The structure of the His128Asn variant complexed with hydrogen peroxide has also been determined at 2.3-A resolution, revealing the existence of hydrogen peroxide binding sites both in the heme distal pocket and in the main channel. Unexpectedly, the largest changes in protein structure resulting from peroxide binding are clustered on the heme proximal side and mainly involve residues in only two subunits, leading to a departure from the 222-point group symmetry of the native enzyme. An active role for channels in the selective flow of substrates through the catalase molecule is proposed as an integral feature of the catalytic mechanism. The Asn201His variant of HPII was found to contain unoxidized heme b in combination with the proximal side His-Tyr bond suggesting that the mechanistic pathways of the two reactions can be uncoupled.  相似文献   

20.
X-ray crystal structure of canine myeloperoxidase at 3 A resolution.   总被引:7,自引:0,他引:7  
The three-dimensional structure of the enzyme myeloperoxidase has been determined by X-ray crystallography to 3 A resolution. Two heavy atom derivatives were used to phase an initial multiple isomorphous replacement map that was subsequently improved by solvent flattening and non-crystallographic symmetry averaging. Crystallographic refinement gave a final model with an R-factor of 0.257. The root-mean-square deviations from ideality for bond lengths and angles were 0.011 A and 3.8 degrees. Two, apparently identical, halves of the molecule are related by local dyad and covalently linked by a single disulfide bridge. Each half-molecule consists of two polypeptide chains of 108 and 466 amino acid residues, a heme prosthetic group, a bound calcium ion and at least three sites of asparagine-linked glycosylation. There are six additional intra-chain disulfide bonds, five in the large polypeptide and one in the small. A central core region that includes the heme binding site is composed of five alpha-helices. Regions of the larger polypeptide surrounding this core are organized into locally folded domains in which the secondary structure is predominantly alpha-helical with very little organized beta-sheet. A proximal ligand to the heme iron atom has been identified as histidine 336, which is in turn hydrogen-bonded to asparagine 421. On the distal side of the heme, histidine 95 and arginine 239 are likely to participate directly in the catalytic mechanism, in a manner analogous to the distal histidine and arginine of the non-homologous enzyme cytochrome c peroxidase. The site of the covalent linkage to the heme has been tentatively identified as glutamate 242, although the chemical nature of the link remains uncertain. The calcium binding site has been located in a loop comprising residues 168 to 174 together with aspartate 96. Myeloperoxidase is a member of a family of homologous mammalian peroxidases that includes thyroid peroxidase, eosinophil peroxidase and lactoperoxidase. The heme environment, defined by our model for myeloperoxidase, appears to be highly conserved in these four mammalian peroxidases. Furthermore, the conservation of all 12 cysteine residues involved in the six intra-chain disulfide bonds and the calcium binding loop suggests that the three-dimensional structures of members of this gene family are likely to be quite similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号