首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor immune tolerance plays a critical role in tumor cell survival; the establishment of tumor immune tolerance is incompletely understood yet. Integrin alphavbeta6 (avb6) is involved in tumor growth and metastasis. This study aimed to observe the effect of avb6 on the development of tumor tolerance in colorectal cancer (CRC). In this study, 28 CRC patients were recruited. The frequencies of tolerogenic dendritic cells (TolDC), regulatory T cells (Treg), and CD8+ T cells in surgically removed CRC tissue were assessed by flow cytometry. The levels of avb6 in CRC tissue were measured by enzyme-linked immunoassay (ELISA). The effect of avb6 on inducing TolDCs and Tregs was evaluated with the cell culture model. The results showed that in surgically removed CRC tissue, we detected higher frequencies of TolDC and Tregs, lower frequency CD8+ T cells and high levels of avb6 as compared with non-CRC tissue. CRC protein extracts could induce TolDC development that could be blocked by anti-avb6 antibody. CRC-derived DCs could convert naïve CD4+ T cells to Tregs. Peripheral CD8+ T cells from CRC patients still retained the ability to produce granzyme B and to proliferate in response to CRC tumor antigen in culture that was abolished by the presence of CRC-derived Tregs. We conclude that CRC-derived avb6 is involved in the establishment of tumor immune tolerance in local tissues.  相似文献   

2.
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.  相似文献   

3.
Vasoactive intestinal peptide (VIP) is a well-known anti-inflammatory neuropeptide. The capacity of VIP can be exhibited through inhibiting inflammatory responses, shifting the Th1/Th2 balance in favor of anti-inflammatory Th2 immunity and inducing regulatory T cells (Tregs) with suppressive activity. In addition to pro-inflammatory Th1 response, Th17 are also believed to play important roles in the pathogenesis of rheumatoid arthritis (RA). In this study, we used collagen-induced arthritis (CIA) model in Wistar rats to investigate the role of VIP in the balance of CD4+ CD25+ Tregs and Th17 on RA. Data presented here showed that administration of VIP decreased incidence and severity of CIA. Disease suppression was associated with the upregulation of CD4+ CD25+ Tregs, downregulation of Th17- and Th1-type response and influence on the RANK/RANKL/OPG system. The results provide novel evidence that the therapeutic effects of VIP on CIA rats were associated with the balance of CD4+ CD25+ Tregs and Th17.  相似文献   

4.
Th17细胞和Treg细胞是CD4+T细胞在不同细胞因子环境中分化出的新亚群,发挥不同的生物学效应,使机体的免疫系统处于平衡状态.Th17/Treg细胞失衡可引起一系列自身免疫性疾病.银屑病是与遗传、免疫异常有关的皮肤炎症性疾病,其发病机制尚不清楚.越来越多的研究发现,Th17细胞增多和Treg细胞减少及其分泌的细胞因子在银屑病的发病中有着重要作用.本文围绕这一机制综述了近年来有关Th17细胞、Treg细胞在银屑病发病机制中作用的研究,帮助我们更深入地了解银屑病的发病机制并为今后临床诊断和治疗提供依据.  相似文献   

5.
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4+Foxp3+ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4+Foxp3+ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP+ and LAP Tregs had a similar effector/memory phenotype. However, LAP+ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP negative counterparts. The in vitro immunosuppressive activity of LAP+ Tregs, exerted via a transforming growth factor-β–mediated mechanism, was more potent than that of LAP Tregs. Furthermore, the enrichment of LAP+ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP+ Foxp3+ CD4+ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP+ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.  相似文献   

6.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.  相似文献   

7.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

8.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

9.
Pancreatic cancer (PC) is an aggressive disease with dismal prognosis. Surgical resection is the recommended treatment for long-term survival, but patients with resectable PC are in the minority (with a 5-year survival rate of 20 %). Therefore, development of novel therapeutic strategies, such as anti-PC immunotherapy, is crucial. α-Enolase (ENO1) is an enzyme expressed on the surface of pancreatic cancer cells and is able to promote cell migration and cancer metastasis. The capacity of ENO1 to induce an immune response in PC patients renders it a true tumor-associated antigen. In this study, we characterized the effector functions of ENO1-specific T cells isolated from PC patients, and we specifically evaluated the successful role of intra-tumoral T helper 17 (Th17) cells and the inhibitory role of regulatory T (Tregs) cells in respectively promoting or reducing the cancer-specific immune response. In this ex vivo study, we have demonstrated, for the first time, that ENO1-specific Th17 cells have a specific anti-cancer effector function in PC patients, and that there are decreased levels of these cells in cancer compared to healthy mucosa. Conversely, there are elevated levels of ENO1-specific Tregs in PC patients which lead to inhibition of the antigen-specific effector T cells, thus highlighting a possible role in promoting PC progression. These results may be relevant for the design of novel immunotherapeutic strategies in pancreatic cancer.  相似文献   

10.
Recent evidence suggests that decline of regulatory T cells (Tregs) play a critical role in the prevalence of autoimmune diseases inhibiting the maintenance of peripheral self tolerance, while its augmentation leads to insufficient antitumor response, accompanied with poor prognosis in various malignancies. Increased number of Tregs (CD4+CD25+FoxP3+) were noticed in peripheral blood mononuclear cells (PBMCs), tumor-infiltrating lymphocytes (TILs) and/or regional lymph nodes lymphocytes (LNLs) of patients with gastrointestinal tumors. The aim of our study was to investigate the correlation between the percentage of Tregs in peripheral blood of patients with colorectal carcinoma, using flow cytometric technique and tumor stages, classified as Dukes' A, B, C or D and by stage of differentiation. Peripheral blood venous samples were obtained from 92 patients with colorectal cancer and from 30 healthy adult volunteers. Statistical analysis: Linear regression equations were generated using a least-squares method and analyzed for differences of covariance. Statistical significance was calculated by Mann Whitney U-test. Our data has shown that 15% patients with colorectal cancer were classified as Dukes' A, 41% were Dukes' B, 35% were Dukes' C and 9% were Dukes' D. 54% patients with CRC were well differentiated, 11% were poorly differentiated, 20 were moderately differentiated, tage, 4% were mucinous carcinoma and rest of 11% were partly good differentiated with mucinous components. The increased percentage of Tregs in colorectal cancer patients correlates with tumor stage. These results indicate a possible involvement of regulatory T cells in disease progression. New strategies using inhibition or depletion of Tregs are necessary to elucidate the complexity of defective tumor immunity.  相似文献   

11.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

12.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 and Th17 cell-mediated autoimmune disease of the CNS. IDO and tryptophan metabolites have inhibitory effects on Th1 cells in EAE. For Th17 cells, IDO-mediated tryptophan deprivation and small molecule halofuginone-induced amino acid starvation response were shown to activate general control nonrepressed 2 (GCN2) kinase that directly or indirectly inhibits Th17 cell differentiation. However, it remains unclear whether IDO and tryptophan metabolites impact the Th17 cell response by mechanisms other than the GCN2 kinase pathway. In this article, we show that IDO-deficient mice develop exacerbated EAE with enhanced encephalitogenic Th1 and Th17 cell responses and reduced regulatory T cell (Treg) responses. Administration of the downstream tryptophan metabolite 3-hydroxyanthranillic acid (3-HAA) enhanced the percentage of Tregs, inhibited Th1 and Th17 cells, and ameliorated EAE. We further demonstrate that Th17 cells are less sensitive to direct suppression by 3-HAA than are Th1 cells. 3-HAA treatment in vitro reduced IL-6 production by activated spleen cells and increased expression of TGF-β in dendritic cells (DCs), which correlated with enhanced levels of Tregs, suggesting that 3-HAA-induced Tregs contribute to inhibition of Th17 cells. By using a DC-T cell coculture, we found that 3-HAA-treated DCs expressed higher levels of TGF-β and had properties to induce generation of Tregs from anti-CD3/anti-CD28-stimulated naive CD4(+) T cells. Thus, our data support the hypothesis that IDO induces the generation of Tregs via tryptophan metabolites, such as 3-HAA, which enhances TGF-β expression from DCs and promotes Treg differentiation.  相似文献   

13.
Natural regulatory T cells (Tregs) are present in high frequencies among tumor-infiltrating lymphocytes and in draining lymph nodes, supposedly facilitating tumor development. To investigate their role in controlling local immune responses, we analyzed intratumoral T cell accumulation and function in the presence or absence of Tregs. Tumors that grew in normal BALB/c mice injected with the 4T1 tumor cell line were highly infiltrated by Tregs, CD4 and CD8 cells, all having unique characteristics. Most infiltrating Tregs expressed low levels of CD25Rs and Foxp3. They did not proliferate even in the presence of IL-2 but maintained a strong suppressor activity. CD4 T cells were profoundly anergic and CD8 T cell proliferation and cytotoxicity were severely impaired. Depletion of Tregs modified the characteristics of tumor infiltrates. Tumors were initially invaded by activated CD4(+)CD25(-) T cells, which produced IL-2 and IFN-gamma. This was followed by the recruitment of highly cytotoxic CD8(+) T cells at tumor sites leading to tumor rejection. The beneficial effect of Treg depletion in tumor regression was abrogated when CD4 helper cells were also depleted. These findings indicate that the massive infiltration of tumors by Tregs prevents the development of a successful helper response. The Tregs in our model prevent Th cell activation and subsequent development of efficient CD8 T cell activity required for the control of tumor growth.  相似文献   

14.
The T helper 17 (Th17) cells in tumor microenvironment play an important role in colorectal cancer (CRC) progression. This study investigated the mechanism of Th17 cell differentiation in CRC with a focus on the role of tumor exosome-transmitted long noncoding RNA (lncRNA). Exosomes were isolated from the CRC cells and serum of CRC patients. The role and mechanism of the lncRNA CRNDE-h transmitted by CRC exosomes in Th17 cell differentiation were assessed by using various molecular biological methods. The serum exosomal CRNDE-h level was positively correlated with the proportion of Th17 cells in the tumor-infiltrating T cells in CRC patients. CRC exosomes contained abundant CRNDE-h and transmitted them to CD4+ T cells to increase the Th17 cell proportion, RORγt expression, and IL-17 promoter activity. The underlying mechanism is that, CRNDE-h bound to the PPXY motif of RORγt and impeded the ubiquitination and degradation of RORγt by inhibiting its binding with the E3 ubiquitin ligase Itch. The in vivo experiments confirmed that the targeted silence of CRNDE-h in CD4+ T cells attenuated the CRC tumor growth in mice. The present findings demonstrated that the tumor exosome transmitted CRNDE-h promoted Th17 cell differentiation by inhibiting the Itch-mediated ubiquitination and degradation of RORγt in CRC, expanding our understanding of Th17 cell differentiation in CRC.Subject terms: Cancer, Cell biology  相似文献   

15.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

16.
Fetomaternal tolerance has been shown to depend both on regulatory T cells (Tregs) and negative signals from the PD1-PDL1 costimulatory pathway. More recently, IL-17-producing T cells (Th17) have been recognized as a barrier in inducing tolerance in transplantation. In this study, we investigate the mechanisms of PDL1-mediated regulation of fetomaternal tolerance using an alloantigen-specific CD4(+) TCR transgenic mouse model system (ABM-tg mouse). PDL1 blockade led to an increase in embryo resorption and a reduction in litter size. This was associated with a decrease in Tregs, leading to a lower Treg/effector T cell ratio. Moreover, PDL1 blockade inhibited Ag-specific alloreactive T cell apoptosis and induced apoptosis of Tregs and a shift toward higher frequency of Th17 cells, breaking fetomaternal tolerance. These Th17 cells arose predominantly from CD4(+)Foxp3(-) cells, rather than from conversion of Tregs. Locally in the placenta, similar decrease in regulatory and apoptotic markers was observed by real-time PCR. Neutralization of IL-17 abrogated the anti-PDL1 effect on fetal survival rate and restored Treg numbers. Finally, the adoptive transfer of Tregs was also able to improve fetal survival in the setting of PDL1 blockade. This is to our knowledge the first report using an alloantigen-specific model that establishes a link between PDL1, Th17 cells, and fetomaternal tolerance.  相似文献   

17.
Characterized by immunosuppression regulatory T cells (Tregs) play a key role in maintaining immune tolerance. A growing number of tumours have been found with Tregs accumulating in microenvironment and patients with high density of Tregs in tumour stroma get a worse prognosis, which suggests that Tregs may inhibit anti-tumour immunity in stroma, resulting in a poor prognosis. In this paper, we demonstrate the accumulation of Tregs in tumour stroma and the possible suppressive mechanisms. We also state the immunotherapy that has being used in animal and clinical trials.  相似文献   

18.
19.
Little is known about the differences in the CD4+ T-cell response induced by Sporothrix schenckii and Sporothrix brasiliensis, the most virulent species that cause sporotrichosis. Here, the helper (Th) and regulatory T cells (Tregs) responses were evaluated comparatively in a murine model of sporotrichosis on days 7, 21 and 35 after subcutaneous infection with either S. schenckii or S. brasiliensis conidia. The fungal load was measured at the site of infection, as well as in the liver and spleen. The Th1/Th17/Tregs responses were analyzed in the spleen, while the level of IL-2, IL-4, IL-6, TNF-alpha, IFN-?, IL-17A and IL-10 cytokines were measured at the local site of infection on 24 h postinfections and in sera on the indicated days. S. brasiliensis caused a longer-lasting infection in the skin and chronic systemic dissemination associated to more severe granulomatous lesions. Similar Th1/Th1-Th17/Tregs responses were induced by both S. brasiliensis and S. schenckii on 7th and 21st d.p.i but on 35 d.p.i a reduction of Th1 and Th1-Th17 cells, associated to higher values of Th17/Tregs cells was observed only in S. brasiliensis-infected mice. In summary, S. brasiliensis caused a more severe disease associated with sustained Th17/Tregs responses than S. schenckii in mice.  相似文献   

20.
Autoimmune diseases are a broad spectrum of disorders involved in the imbalance of T-cell subsets, in which interplay or interaction of Th1, Th17 and Tregs are most important, resulting in prolonged inflammation and subsequent tissue damage. Pathogenic Th1 and Th17 cells can secrete signature proinflammatory cytokines, including interferon (IFN)-γ and IL-17, however Tregs can suppress effector cells and dampen a wide spectrum of immune responses. Melatonin (MLT) can regulate the humoral and cellular immune responses, as well as cell proliferation and immune mediators. Treatment with MLT directly interferes with T cell differentiation, controls the balance between pathogenic and regulatory T cells and regulates inflammatory cytokine release. MLT can promote the differentiation of type 1 regulatory T cells via extracellular signal regulated kinase 1/2 (Erk1/2) and retinoic acid-related orphan receptor-α (ROR-α) and suppress the differentiation of Th17 cells via the inhibition of ROR-γt and ROR-α expression through NFIL3. Moreover, MLT inhibits NF-κB signaling pathway to reduce TNF-α and IL-1β expression, promotes Nrf2 gene and protein expression to reduce oxidative and inflammatory states and regulates Bax and Bcl-2 to reduce apoptosis; all of which alleviate the development of autoimmune diseases. Thus, MLT can serve as a potential new therapeutic target, creating opportunities for the treatment of autoimmune diseases. This review aims to highlight recent advances in the role of MLT in several autoimmune diseases with particular focus given to novel signaling pathways involved in Th17 and Tregs as well as cell proliferation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号