首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A clear understanding of the term "species" is fundamental to the subject of evolution. However, introductory textbooks often fail to address this topic until one of the later chapters, after having used the term species in all preceding chapters. Furthermore, definitions of terms critical to a clear understanding of this subject are often vague or absent in chapters on species concepts. We feel the popular notion of a "species problem" has been unnecessarily inflated by this less-than-effective educational approach. Clearly addressing this essential subject at the beginning of a course on evolution will prepare students to learn the details and complexities of evolution. Here we provide the background for an alternative approach to this foundational topic, followed by an outlined lesson plan. We emphasize early introduction of this subject in texts and courses using unambiguous terminology and including the historical development of species concepts.  相似文献   

2.
Natural selection is an important mechanism in the unifying biological theory of evolution, but many undergraduate students struggle to learn this concept. Students enter introductory biology courses with predictable misconceptions about natural selection, and traditional teaching methods, such as lecturing, are unlikely to dispel these misconceptions. Instead, students are more likely to learn natural selection when they are engaged in instructional activities specifically designed to change misconceptions. Three instructional strategies useful for changing student conceptions include (1) eliciting na?ve conceptions from students, (2) challenging nonscientific conceptions, and (3) emphasizing conceptual frameworks throughout instruction. In this paper, we describe a classroom discussion of the question “Are humans evolving?” that employs these three strategies for teaching students how natural selection operates. Our assessment of this activity shows that it successfully elicits students’ misconceptions and improves student understanding of natural selection. Seventy-eight percent of our students who began this exercise with misconceptions were able to partially or completely change their misconceptions by the end of this discussion. The course that this activity was part of also showed significant learning gains (d = 1.48) on the short form of the Conceptual Inventory of Natural Selection. This paper includes all the background information, data, and visual aids an instructor will need to implement this activity.  相似文献   

3.
The main stages of history of this most important biological conception are presented and the state of the modern cell theory and its future prospects are considered. Since 1839, when T. Schwann expounded his conception of the cell, a long pathway in cognition of the cell function and organization has been covered. From the original picture of the complex organism as a "cellular state", made up of relatively independent "elementary organisms", i.e. cells the modern biology has come to the idea of the cell as an integral system either being a part of a complex organism, or living free in the nature (protists). The cell represents certain qualitatively peculiar level in a complex evolutionary established hierarchy of biological systems. Some particular tight relations, existing between cytology, as a fundamental biological science and molecular biology, genetics, ecology and other biological disciplines are considered. The importance of the cell conception is ascertained for practical aims, especially in medicine.  相似文献   

4.
5.
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by “building and breaking it” via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the “Vision and Change” call to action in undergraduate biology education by providing a hands-on approach to biology.  相似文献   

6.
在《分子细胞生物学》课程体系和教学方法研究中,提出了"以分子细胞生物学领域最新研究进展为主要内容"的课程体系以及"培养学生创造性思维为主题"的课堂教学方法和考核模式为要特征的教学改革,很好地培养了学生对《分子细胞生物学》的兴趣和较强的科研的能力。本文从课程体系、教学方法和考试方式等方面总结了《分子细胞生物学》课程改革的研究成果。  相似文献   

7.
Pseudo-nitzschia is a thoroughly studied pennate diatom genus for ecological and biological reasons. Many species in this genus, including Pseudo-nitzschia multistriata, can produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Physiological, phylogenetic and biological features of P. multistriata were studied extensively in the past. Life cycle stages, including the sexual phase, fundamental in diatoms to restore the maximum cell size and avoid miniaturization to death, have been well described for this species. P. multistriata is heterothallic; sexual reproduction is induced when strains of opposite mating type are mixed, and proceeds with cells producing two functionally anisogamous gametes each; however, detailed cytological information for this process is missing. By means of confocal laser scanning microscopy and nuclear staining, we followed the nuclear fate during meiosis, and using time-lapse cinematography, we timed every step of the sexual reproduction process from mate pairing to initial cell hatching. The present paper depicts cytological aspects during gametogenesis in P. multistriata, shedding light on the chloroplast behaviour during sexual reproduction, finely describing the timing of the sexual phases and providing reference data for further studies on the molecular control of this fundamental process.  相似文献   

8.
Li H  Lin X 《Cytokine》2008,44(1):1-8
Cell migration is involved in diverse physiological processes including embryogenesis, immunity, and diseases such as cancer and chronic inflammatory disease. The movement of many cell types is directed by extracellular gradients of diffusible chemicals. This phenomenon, referred to as "chemotaxis", was first described in 1888 by Leber who observed the movement of leukocytes toward sites of inflammation. We now know that a large family of small proteins, chemokines, serves as the extracellular signals and a family of G-protein-coupled receptors (GPCRs), chemokine receptors, detects gradients of chemokines and guides cell movement in vivo. Currently, we still know little about the molecular machineries that control chemokine gradient sensing and migration of immune cells. Fortunately, the molecular mechanisms that control these fundamental aspects of chemotaxis appear to be evolutionarily conserved, and studies in lower eukaryotic model systems have allowed us to form concepts, uncover molecular components, develop new techniques, and test models of chemotaxis. These studies have helped our current understanding of this complicated cell behavior. In this review, we wish to mention landmark discoveries in the chemotaxis research field that shaped our current understanding of this fundamental cell behavior and lay out key questions that remain to be addressed in the future.  相似文献   

9.
Multiple alignment of complete sequences (MACS) in the post-genomic era   总被引:9,自引:0,他引:9  
Lecompte O  Thompson JD  Plewniak F  Thierry J  Poch O 《Gene》2001,270(1-2):17-30
Multiple alignment, since its introduction in the early seventies, has become a cornerstone of modern molecular biology. It has traditionally been used to deduce structure / function by homology, to detect conserved motifs and in phylogenetic studies. There has recently been some renewed interest in the development of multiple alignment techniques, with current opinion moving away from a single all-encompassing algorithm to iterative and / or co-operative strategies. The exploitation of multiple alignments in genome annotation projects represents a qualitative leap in the functional analysis process, opening the way to the study of the co-evolution of validated sets of proteins and to reliable phylogenomic analysis. However, the alignment of the highly complex proteins detected by today's advanced database search methods is a daunting task. In addition, with the explosion of the sequence databases and with the establishment of numerous specialized biological databases, multiple alignment programs must evolve if they are to successfully rise to the new challenges of the post-genomic era. The way forward is clearly an integrated system bringing together sequence data, knowledge-based systems and prediction methods with their inherent unreliability. The incorporation of such heterogeneous, often non-consistent, data will require major changes to the fundamental alignment algorithms used to date. Such an integrated multiple alignment system will provide an ideal workbench for the validation, propagation and presentation of this information in a format that is concise, clear and intuitive.  相似文献   

10.
"Candidatus Phytoplasma aurantifolia" is the causative agent of witches' broom disease in the Mexican lime tree (Citrus aurantifolia L.), and is responsible for major tree losses in Southern Iran and Oman. The pathogen is strictly biotrophic, and, therefore, completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. We applied a proteomics approach to analyse gene expression in Mexican limes infected with "Ca. Phytoplasma aurantifolia". Leaf samples were collected from healthy and infected plants and were analysed using 2-DE coupled with MS. Among 800 leaf proteins that were detected reproducibly in eight biological replicates of healthy and eight biological replicates of infected plants, 55 showed a significant response to the disease. MS resulted in identification of 39 regulated proteins, which included proteins that were involved in oxidative stress defence, photosynthesis, metabolism, and the stress response. Our results provide the first proteomic view of the molecular basis of the infection process and identify genes that could help inhibit the effects of the pathogen.  相似文献   

11.
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

12.

Background

The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method.

Results

Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication.

Conclusions

We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.
  相似文献   

13.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.  相似文献   

14.
历史地回顾了谱系、系统发育、单系、多系概念的由来和发展。详细讨论了单系(monophyly )和多系(polyphyly)在叙述分类群起源和描述分类群内部系统发育线多样性的不同含义。以此为基础,说明在“多系_多2_多域”的八纲系统中“多系”和“单系”是指自然分类群内系统发育线的多样性,不等同于“多源”和“单源”。通过与近年来所发表的被子植物分类系统的比较,认为基于化石、形态、分子和地理分布证据提出的八纲系统所显示的预言性,必将在今后的科学实践中经受检验。  相似文献   

15.
The so-called "species problem" has plagued evolutionary biology since before Darwin's publication of the aptly titled Origin of Species. Many biologists think the problem is just a matter of semantics; others complain that it will not be solved until we have more empirical data. Yet, we don't seem to be able to escape discussing it and teaching seminars about it. In this paper, I briefly examine the main themes of the biological and philosophical literatures on the species problem, focusing on identifying common threads as well as relevant differences. I then argue two fundamental points. First, the species problem is not primarily an empirical one, but it is rather fraught with philosophical questions that require-but cannot be settled by-empirical evidence. Second, the (dis-)solution lies in explicitly adopting Wittgenstein's idea of "family resemblance" or cluster concepts, and to consider species as an example of such concepts. This solution has several attractive features, including bringing together apparently diverging themes of discussion among biologists and philosophers. The current proposal is conceptually independent (though not incompatible) with the pluralist approach to the species problem advocated by Mishler, Donoghue, Kitcher and Dupré, which implies that distinct aspects of the species question need to be emphasized depending on the goals of the researcher. From the biological literature, the concept of species that most closely matches the philosophical discussion presented here is Templeton's cohesion idea.  相似文献   

16.
The introduction of the Force Concept Inventory (FCI) by David Hestenes and colleagues in 1992 produced a remarkable impact within the community of physics teachers. An instrument to measure student comprehension of the Newtonian concept of force, the FCI demonstrates that active learning leads to far superior student conceptual learning than didactic lectures. Compared to a working knowledge of physics, biological literacy and illiteracy have an even more direct, dramatic, and personal impact. They shape public research and reproductive health policies, the acceptance or rejection of technological advances, such as vaccinations, genetically modified foods and gene therapies, and, on the personal front, the reasoned evaluation of product claims and lifestyle choices. While many students take biology courses at both the secondary and the college levels, there is little in the way of reliable and valid assessment of the effectiveness of biological education. This lack has important consequences in terms of general bioliteracy and, in turn, for our society. Here we describe the beginning of a community effort to define what a bioliterate person needs to know and to develop, validate, and disseminate a tiered series of instruments collectively known as the Biology Concept Inventory (BCI), which accurately measures student comprehension of concepts in introductory, genetic, molecular, cell, and developmental biology. The BCI should serve as a lever for moving our current educational system in a direction that delivers a deeper conceptual understanding of the fundamental ideas upon which biology and biomedical sciences are based.  相似文献   

17.
The desmoid tumor: "benign" neoplasm, not a benign disease   总被引:2,自引:0,他引:2  
The desmoid tumor is a rare neoplasm which, because of its histopathologic appearance, has been traditionally considered to be benign. Despite its benign microscopic features, it has an aggressive local behavior and, if not excised adequately, has a tendency to recur locally and invade neighboring structures with significant potential for morbidity, deformity, or even death. Two cases of recurrent extraabdominal desmoid tumors are presented not only because they are highly representative of this disease, but also because they emphasize the need for aggressive surgical treatment. Also, they are unusual and challenging cases from a reconstructive standpoint. Based on this experience and on the most recent literature, we believe that this tumor, regardless of its microscopic features, should be addressed and treated as a malignancy.  相似文献   

18.
In the past 50 years, immunologists have accumulated an amazing amount of information as to how the immune system functions. However, one of the most fundamental aspects of immunity, how the immune system discriminates between self vs. non-self, still remains an enigma. Any attempt to explain this most intriguing and fundamental characteristic must account for this decision at the level of the whole immune system, but as well, at the level of the individual cells making up the immune system. Moreover, it must provide for a molecular explanation as to how and why the cells behave as they do. The "Quantal Theory", proposed herein, is based upon the "Clonal Selection Theory", first proposed by Sir McFarland Burnet in 1955, in which he explained the remarkable specificity as well as diversity of recognition of everything foreign in the environment. The "Quantal Theory" is built upon Burnet's premise that after antigen selection of cell clones, a proliferative expansion of the selected cells ensues. Furthermore, it is derived from experiments which indicate that the proliferation of antigen-selected cell clones is determined by a quantal, "all-or-none", decision promulgated by a critical number of cellular receptors triggered by the T Cell Growth Factor (TCGF), interleukin 2 (IL2). An extraordinary number of experiments reported especially in the past 20 years, and detailed herein, indicate that the T cell Antigen Receptor (TCR) behaves similarly, and also that there are several critical numbers of triggered TCRs that determine different fates of the T cells. Moreover, the fates of the cells appear ultimately to be determined by the TCR triggering of the IL2 and IL2 receptor (IL2R) genes, which are also expressed in a very quantal fashion. The "Quantal Theory" states that the fundamental decisions of the T cell immune system are dependent upon the cells receiving a critical number of triggered TCRs and IL2Rs and that the cells respond in an all-or-none fashion. The "Quantal Theory" accounts fully for the development of T cells in the thymus, and such fundamental cellular fates as both "positive" and "negative" selection, as well as the decision to differentiate into a "Regulatory T cell" (T-Reg). In the periphery, the "Quantal Theory" accounts for the decision to proliferate or not in response to the presence of an antigen, either non-self or self, or to differentiate into a T-Reg. Since the immune system discriminates between self and non-self antigens by the accumulated number of triggered TCRs and IL2Rs, therapeutic manipulation of the determinants of these quantal decisions should permit new approaches to either enhance or dampen antigen-specific immune responses.  相似文献   

19.
In recent years, the integration of science and mathematics has become popular among educators because of its potential benefits for student learning. The purpose of this study is to introduce a two-day interdisciplinary lesson that brings science and mathematics concepts together, actively engaging students in working with percentages of the ingredients in mixtures with the concept of torque. Participation in this Grade 7-9 lesson provides opportunities for students to learn from both content areas as they progress through a variety of science process skills.  相似文献   

20.
Today’s cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, “the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease.” In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?

R. M. Perera  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号