首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.  相似文献   

2.
The residue Glu636 is located near the thiamine diphosphate (ThDP) binding site of the Escherichia coli pyruvate dehydrogenase complex E1 subunit (PDHc-E1), and to probe its function two variants, E636A and E636Q were created with specific activities of 2.5 and 26% compared with parental PDHc-E1. According to both fluorescence binding and kinetic assays, the E636A variant behaved according to half-of-the-sites mechanism with respect to ThDP. In contrast, with the E636Q variant a K(d,ThDP) = 4.34 microM and K(m,ThDP) = 11 microM were obtained with behavior more reminiscent of the parental enzyme. The CD spectra of both variants gave evidence for formation of the 1',4'-iminopyrimidine tautomer on binding of phosphonolactylthiamine diphosphate, a stable analog of the substrate-ThDP covalent complex. Rapid formation of optically active (R)-acetolactate by both variants, but not by the parental enzyme, was observed by CD and NMR spectroscopy. The acetolactate configuration produced by the Glu636 variants is opposite that produced by the enzyme acetolactate synthase and the Asp28-substituted variants of yeast pyruvate decarboxylase, suggesting that the active centers of the two sets of enzymes exhibit different facial selectivity (re or si) vis à vis pyruvate. The tryptic peptide map (mass spectral analysis) revealed that the Glu636 substitution changed the mobility of a loop comprising amino acid residues from the ThDP binding fold. Apparently, the residue Glu636 has important functions both in active center communication and in protecting the active center from undesirable "carboligase" side reactions.  相似文献   

3.
Binding and activation of thiamin diphosphate in acetohydroxyacid synthase   总被引:1,自引:0,他引:1  
Acetohydroxyacid synthases (AHASs) are biosynthetic thiamin diphosphate- (ThDP) and FAD-dependent enzymes. They are homologous to pyruvate oxidase and other members of a family of ThDP-dependent enzymes which catalyze reactions in which the first step is decarboxylation of a 2-ketoacid. AHAS catalyzes the condensation of the 2-carbon moiety, derived from the decarboxylation of pyruvate, with a second 2-ketoacid, to form acetolactate or acetohydroxybutyrate. A structural model for AHAS isozyme II (AHAS II) from Escherichia coli has been constructed on the basis of its homology with pyruvate oxidase from Lactobacillus plantarum (LpPOX). We describe here experiments which further test the model, and test whether the binding and activation of ThDP in AHAS involve the same structural elements and mechanism identified for homologous enzymes. Interaction of a conserved glutamate with the N1' of the ThDP aminopyrimidine moiety is involved in activation of the cofactor for proton exchange in several ThDP-dependent enzymes. In accord with this, the analogue N3'-pyridyl thiamin diphosphate does not support AHAS activity. Mutagenesis of Glu47, the putative conserved glutamate, decreases the rate of proton exchange at C-2 of bound ThDP by nearly 2 orders of magnitude and decreases the turnover rate for the mutants by about 10-fold. Mutant E47A also has altered substrate specificity, pH dependence, and other changes in properties. Mutagenesis of Asp428, presumed on the basis of the model to be the crucial carboxylate ligand to Mg(2+) in the "ThDP motif", leads to a decrease in the affinity of AHAS II for Mg(2+). While mutant D428N shows ThDP affinity close to that of the wild-type on saturation with Mg(2+), D428E has a decreased affinity for ThDP. These mutations also lead to dependence of the enzyme on K(+). These experiments demonstrate that AHAS binds and activates ThDP in the same way as do pyruvate decarboxylase, transketolase, and other ThDP-dependent enzymes. The biosynthetic activity of AHAS also involves many other factors beyond the binding and deprotonation of ThDP; changes in the ligands to ThDP can have interesting and unexpected effects on the reaction.  相似文献   

4.
In addition to the decarboxylation of 2-oxo acids, thiamin diphosphate (ThDP)-dependent decarboxylases/dehydrogenases can also carry out so-called carboligation reactions, where the central ThDP-bound enamine intermediate reacts with electrophilic substrates. For example, the enzyme yeast pyruvate decarboxylase (YPDC, from Saccharomyces cerevisiae) or the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1) can produce acetoin and acetolactate, resulting from the reaction of the central thiamin diphosphate-bound enamine with acetaldehyde and pyruvate, respectively. Earlier, we had shown that some active center variants indeed prefer such a carboligase pathway to the usual one [Sergienko, Jordan, Biochemistry 40 (2001) 7369-7381; Nemeria et al., J. Biol. Chem. 280 (2005) 21,473-21,482]. Herein is reported detailed analysis of the stereoselectivity for forming the carboligase products acetoin, acetolactate, and phenylacetylcarbinol by the E477Q and D28A YPDC, and the E636A and E636Q PDHc-E1 active-center variants. Both pyruvate and beta-hydroxypyruvate were used as substrates and the enantiomeric excess was analyzed by a combination of NMR, circular dichroism and chiral-column gas chromatographic methods. Remarkably, the two enzymes produced a high enantiomeric excess of the opposite enantiomer of both acetoin-derived and acetolactate-derived products, strongly suggesting that the facial selectivity for the electrophile in the carboligation is different in the two enzymes. The different stereoselectivities exhibited by the two enzymes could be utilized in the chiral synthesis of important intermediates.  相似文献   

5.
Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of “unusual” reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of “superassemblies” as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.  相似文献   

6.
The decarboxylase/dehydrogenase (E1b) component of the 4-megadalton human branched-chain alpha-keto acid dehydrogenase (BCKD) metabolic machine is a thiamin diphosphate (ThDP)-dependent enzyme with a heterotetrameric cofactor-binding fold. The E1b component catalyzes the decarboxylation of alpha-keto acids and the subsequent reductive acylation of the lipoic acid-bearing domain (LBD) from the 24-meric transacylase (E2b) core. In the present study, we show that the binding of cofactor ThDP to the E1b active site induces a disorder-to-order transition of the conserved phosphorylation loop carrying the two phosphorylation sites Ser(292)-alpha and Ser(302)-alpha, as deduced from the 1.80-1.85 A apoE1b and holoE1b structures. The induced loop conformation is essential for the recognition of lipoylated LBD to initiate E1b-catalyzed reductive acylation. Alterations of invariant Arg(287)-alpha, Asp(295)-alpha, Tyr(300)-alpha, and Arg(301)-alpha that form a hydrogen-bonding network in the phosphorylation loop result in the disordering of the loop conformation as elucidated by limited proteolysis, accompanied by the impaired binding and diminished reductive acylation of lipoylated LBD. In contrast, k(cat) values for E1b-catalyzed decarboxylation of the alpha-keto acid are higher in these E1b mutants than in wild-type E1b, with higher K(m) values for the substrate in the mutants. ThDP binding that orders the loop prevents phosphorylation of E1b by the BCKD kinase and averts the inactivation of wild-type E1b, but not the above mutants, by this covalent modification. Our results establish that the cross-talk between the bound ThDP and the phosphorylation loop conformation serves as a feed-forward switch for multiple reaction steps in the BCKD metabolic machine.  相似文献   

7.
In addition to the decarboxylation of 2-oxo acids, thiamin diphosphate (ThDP)-dependent decarboxylases/dehydrogenases can also carry out so-called carboligation reactions, where the central ThDP-bound enamine intermediate reacts with electrophilic substrates. For example, the enzyme yeast pyruvate decarboxylase (YPDC, from Saccharomyces cerevisiae) or the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1) can produce acetoin and acetolactate, resulting from the reaction of the central thiamin diphosphate-bound enamine with acetaldehyde and pyruvate, respectively. Earlier, we had shown that some active center variants indeed prefer such a carboligase pathway to the usual one [Sergienko, Jordan, Biochemistry 40 (2001) 7369–7381; Nemeria et al., J. Biol. Chem. 280 (2005) 21,473–21,482]. Herein is reported detailed analysis of the stereoselectivity for forming the carboligase products acetoin, acetolactate, and phenylacetylcarbinol by the E477Q and D28A YPDC, and the E636A and E636Q PDHc-E1 active-center variants. Both pyruvate and β-hydroxypyruvate were used as substrates and the enantiomeric excess was analyzed by a combination of NMR, circular dichroism and chiral-column gas chromatographic methods. Remarkably, the two enzymes produced a high enantiomeric excess of the opposite enantiomer of both acetoin-derived and acetolactate-derived products, strongly suggesting that the facial selectivity for the electrophile in the carboligation is different in the two enzymes. The different stereoselectivities exhibited by the two enzymes could be utilized in the chiral synthesis of important intermediates.  相似文献   

8.
Nemeria N  Baykal A  Joseph E  Zhang S  Yan Y  Furey W  Jordan F 《Biochemistry》2004,43(21):6565-6575
Two circular dichroism signals observed on thiamin diphosphate (ThDP)-dependent enzymes, a positive band in the 300-305 nm range and a negative one in the 320-330 nm range, were investigated on yeast pyruvate decarboxylase (YPDC) and on the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1). Addition of the tetrahedral ThDP-acetaldehyde adduct, 2-alpha-hydroxyethylThDP, to PDHc-E1 generates the positive band at 300 nm, consistent with the formation of the 1',4'-iminopyrimidine tautomer, as also demonstrated for phosphonolactylthiamin diphosphate, a stable analogue of the tetrahedral ThDP-pyruvate adduct 2-alpha-lactylThDP (Jordan, F. et al. (2003) J. Am. Chem. Soc. 125, 12732-12738). Therefore, we suggest that all tetrahedral ThDP-bound covalent complexes will also prefer this tautomer, and that the 4'-aminopyrimidine of ThDP participates in multiple steps of acid-base catalysis on ThDP enzymes. Studies with YPDC and PDHc-E1, and their active center variants, in conjunction with chemical models, enabled assignment of the negative band at 330 nm to a charge-transfer transition between the 4'-aminopyrimidine tautomer (presumed electron donor) and the thiazolium ring (presumed electron acceptor) of ThDP, with no significant contributions from any amino acid side chain of the proteins. However, in both YPDC and PDHc-E1, the presence of substrate or substrate surrogate was required to enable detection, suggesting that the band at 320-330 nm be used as a reporter for the Michaelis complex, involving the amino tautomer, on both enzymes. As the positive band near 300 nm reports on the 1',4'-imino tautomer of ThDP, methods are now available for kinetic monitoring of both tautomeric forms.  相似文献   

9.
The crystal structure of the recombinant thiamin diphosphate-dependent E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined at a resolution of 1.85 A. The E. coli PDHc E1 component E1p is a homodimeric enzyme and crystallizes with an intact dimer in an asymmetric unit. Each E1p subunit consists of three domains: N-terminal, middle, and C-terminal, with all having alpha/beta folds. The functional dimer contains two catalytic centers located at the interface between subunits. The ThDP cofactors are bound in the "V" conformation in clefts between the two subunits (binding involves the N-terminal and middle domains), and there is a common ThDP binding fold. The cofactors are completely buried, as only the C2 atoms are accessible from solution through the active site clefts. Significant structural differences are observed between individual domains of E1p relative to heterotetrameric multienzyme complex E1 components operating on branched chain substrates. These differences may be responsible for reported alternative E1p binding modes to E2 components within the respective complexes. This paper represents the first structural example of a functional pyruvate dehydrogenase E1p component from any species. It also provides the first representative example for the entire family of homodimeric (alpha2) E1 multienzyme complex components, and should serve as a model for this class of enzymes.  相似文献   

10.
The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.  相似文献   

11.
Limited proteolysis of the pyruvate decarboxylase (E1, alpha2beta2) component of the pyruvate dehydrogenase (PDH) multienzyme complex of Bacillus stearothermophilus has indicated the importance for catalysis of a site (Tyr281-Arg282) in the E1alpha subunit (Chauhan, H.J., Domingo, G.J., Jung, H.-I. & Perham, R.N. (2000) Eur. J. Biochem. 267, 7158-7169). This site appears to be conserved in the alpha-subunit of heterotetrameric E1s and multiple sequence alignments suggest that there are additional conserved amino-acid residues in this region, part of a common pattern with the consensus sequence -YR-H-D-YR-DE-. This region lies about 50 amino acids on the C-terminal side of a 30-residue motif previously recognized as involved in binding thiamin diphosphate (ThDP) in all ThDP-dependent enzymes. The role of individual residues in this set of conserved amino acids in the E1alpha chain was investigated by means of site-directed mutagenesis. We propose that particular residues are involved in: (a) binding the 2-oxo acid substrate, (b) decarboxylation of the 2-oxo acid and reductive acetylation of the tethered lipoyl domain in the PDH complex, (c) an "open-close" mechanism of the active site, and (d) phosphorylation by the E1-specific kinase (in eukaryotic PDH and branched chain 2-oxo acid dehydrogenase complexes).  相似文献   

12.
Enzymes that use the cofactor thiamin diphosphate (ThDP, 1), the biologically active form of vitamin B(1), are involved in numerous metabolic pathways in all organisms. Although a theory of the cofactor's underlying reaction mechanism has been established over the last five decades, the three-dimensional structures of most major reaction intermediates of ThDP enzymes have remained elusive. Here, we report the X-ray structures of key intermediates in the oxidative decarboxylation of pyruvate, a central reaction in carbon metabolism catalyzed by the ThDP- and flavin-dependent enzyme pyruvate oxidase (POX)3 from Lactobacillus plantarum. The structures of 2-lactyl-ThDP (LThDP, 2) and its stable phosphonate analog, of 2-hydroxyethyl-ThDP (HEThDP, 3) enamine and of 2-acetyl-ThDP (AcThDP, 4; all shown bound to the enzyme's active site) provide profound insights into the chemical mechanisms and the stereochemical course of thiamin catalysis. These snapshots also suggest a mechanism for a phosphate-linked acyl transfer coupled to electron transfer in a radical reaction of pyruvate oxidase.  相似文献   

13.
Both solution and crystallographic studies suggest that the 4'-aminopyrimidine ring of the thiamin diphosphate coenzyme participates in catalysis, likely as an intramolecular general acid-base catalyst via the unusual 1',4'-iminopyrimidine tautomer. It is indeed uncommon for a coenzyme to be identified in its rare tautomeric form on its reaction pathways, yet this has been possible with thiamin diphosphate, in some cases even in the absence of substrate [Nemeria, N., Chakraborty, S., Baykal, A., Korotchkina, L., Patel, M. S., and Jordan, F. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 78-82.]. The ability to detect both the aminopyrimidine and iminopyrimidine tautomeric forms of thiamin diphosphate on enzymes has enabled us to assign the predominant tautomeric form present in individual intermediates on the pathway. Herein, we report the pH dependence of these tautomeric forms providing the first data for the internal thermodynamic equilibria on thiamin diphosphate enzymes for the various ionization and tautomeric forms of this coenzyme on four enzymes: benzaldehyde lyase, benzoylformate decarboxylase, pyruvate oxidase, and the E1 component of the human pyruvate dehydrogenase multienzyme complex. Evidence is provided for an important function of the enzyme environment in altering both the ionization and tautomeric equilibria on the coenzyme even prior to addition of substrate. The pKa for the 4'-aminopyrimidinium moiety coincides with the pH for optimum activity thereby ensuring that all ionization states and tautomeric states are accessible during the catalytic cycle. The dramatic influence of the protein on the internal equilibria also points to conditions under which the long-elusive ylide intermediate could be stabilized.  相似文献   

14.
Thiamin diphosphate (ThDP)-dependent decarboxylations are usually assumed to proceed by a series of covalent intermediates, the first one being the C2-trimethylthiazolium adduct with pyruvate, C2-alpha-lactylthiamin diphosphate (LThDP). Herein is addressed whether such an intermediate is kinetically competent with the enzymatic turnover numbers. In model studies it is shown that the first-order rate constant for decarboxylation can indeed exceed 50 s(-1) in tetrahydrofuran as solvent, approximately 10(3) times faster than achieved in previous model systems. When racemic LThDP was exposed to the E91D yeast pyruvate decarboxylase variant, or to the E1 subunit of the pyruvate dehydrogenase complex (PDHc-E1) from Escherichia coli, it was partitioned between reversion to pyruvate and decarboxylation. Under steady-state conditions, the rate of these reactions is severely limited by the release of ThDP from the enzyme. Under pre-steady-state conditions, the rate constant for decarboxylation on exposure of LThDP to the E1 subunit of the pyruvate dehydrogenase complex was 0.4 s(-1), still more than a 100-fold slower than the turnover number. Because these experiments include binding, decarboxylation, and oxidation (for detection purposes), this is a lower limit on the rate constant for decarboxylation. The reasons for this slow reaction most likely include a slow conformational change of the free LThDP to the V conformation enforced by the enzyme. Between the results from model studies and those from the two enzymes, it is proposed that LThDP is indeed on the decarboxylation pathway of the two enzymes studied, and once LThDP is bound the protein needs to provide little assistance other than a low polarity environment.  相似文献   

15.
The family of giant multienzyme complexes metabolizing pyruvate, 2-oxoglutarate, branched-chain 2-oxo acids or acetoin contains several of the largest and most sophisticated protein assemblies known, with molecular masses between 4 and 10 million Da. The principal enzyme components, E1, E2 and E3, are present in numerous copies and utilize multiple cofactors to catalyze a directed sequence of reactions via substrate channeling. The crystal structure of a heterotetrameric (alpha2beta2) E1, 2-oxoisovalerate dehydrogenase from Pseudomonas putida, reveals a tightly packed arrangement of the four subunits with the beta2-dimer held between the jaws of a 'vise' formed by the alpha2-dimer. A long hydrophobic channel, suitable to accommodate the E2 lipoyl-lysine arm, leads to the active site, which contains the cofactor thiamin diphosphate (ThDP) and an inhibitor-derived covalent modification of a histidine side chain. The E1 structure, together with previous structural information on E2 and E3, completes the picture of the shared architectural features of these enormous macromolecular assemblies.  相似文献   

16.
The 1',4'-iminopyrimidine tautomeric form of the coenzyme thiamin diphosphate (ThDP), implicated in catalysis on the basis of the conformation of enzyme-bound ThDP, has been observed by both ultraviolet absorption and circular dichroism spectroscopy. On yeast pyruvate decarboxylase, the unusual tautomer is observed in an active center variant in which catalysis in the post-decarboxylation regime of the reaction is compromised. In a model system consisting of N1-methyl-4-aminopyrimidinium or N1-methyl-N4-n-butylpyrimidinium salts, on treatment with either NaOH in water, or DBU in DMSO there is an intermediate formed with lambda(max) near 310 nm, and this intermediate reverts back to the starting salt on acidification. Proton NMR chemical shifts are consistent with the intermediate representing the 1-methyl-4-imino tautomer. On the enzyme, the intermediate could be observed by rapid-scan stopped flow with UV detection when reacting holoenzyme of the E477Q active center variant with pyruvate, and by circular dichroism even in the absence of pyruvate. This represents the first direct observation of the imino tautomeric form of ThDP both on the enzyme and in models, although some years ago, this laboratory had already reported some pertinent acid-base properties for its formation [Jordan, F., and Mariam, Y. H. (1978) J. Am. Chem. Soc.100, 2534-2541]. The work also represents the first instance in which a rare tautomer implicated in catalysis is identified and suggests that such tautomeric catalysis may be more common in biology than hitherto recognized.  相似文献   

17.
We report here that alterations of either His291-alpha or His146-beta' in the active site of human branched-chain alpha-ketoacid dehydrogenase (E1b) impede both the decarboxylation and the reductive acylation reactions catalyzed by E1b as well as the binding of cofactor thiamin diphosphate (ThDP). In a refined human E1b active-site structure, His291-alpha, which aligns with His407 in Escherichia coli pyruvate dehydrogenase and His263 in yeast transketolase, is on a largely ordered phosphorylation loop. The imidazole ring of His291-alpha in E1b coordinates to the terminal phosphate oxygen atoms of bound ThDP. The N3 atom of wild-type His146-beta', which can be protonated, binds a water molecule and points toward the aminopyrimidine ring of ThDP. Remarkably, the H291A-alpha mutation results in a complete order-to-disorder transition of the loop region, which precludes the binding of the substrate lipoyl-bearing domain to E1b. The H146A-beta' mutation, on the other hand, does not alter the loop structure, but nullifies the reductive acylation activity of E1b. Our results suggest that: 1) His291-alpha plays a structural rather than a catalytic role in the binding of cofactor ThDP and the lipoyl-bearing domain to E1b, and 2) His146-beta' is an essential catalytic residue, probably functioning as a proton donor in the reductive acylation of lipoamide on the lipoyl-bearing domain.  相似文献   

18.
The pyruvate dehydrogenase complex from Escherichia coli shows an appreciable lag phase (tau) of some minutes when its overall reaction rate was tested with very limiting amounts of thiamin diphosphate. tau depends on the concentration of thiamin diphosphate in a nonlinear fashion. Sodium diphosphate, a competitive inhibitor with respect to thiamin diphosphate (Ki = 5.2 . 10(-4) M) prolongs the lag, while the strongly binding transition state analog thiamin thiazolone diphosphate has no effect. tau is independent of the enzyme concentration, thus no dissociation-association step is involved. Incubation of the pyruvate dehydrogenase complex with thiamin diphosphate, Mg2+, and pyruvate leads to a shortening of the lag phase, as well as to a decrease of the intrinsic tryptophan fluorescence in a time-dependent process, which evinces the same characteristics as tau. Dependence of pyruvate, as well as of the substrate analog methylacetylphosphonate, can be established by measurements of fluorescence quenching, thus ruling out an essential role of hydroxyethyl thiamin diphosphate in the process reflected by the lag phase. The results demonstrate that the lag phase is induced after the binding of both thiamin diphosphate . Mg2+ and pyruvate to the catalytic site to form a ternary enzyme complex, which undergoes subsequently a slow conformational change to an active enzyme form. This change is confined to single subunits, and no interactions between neighboring monomers could be observed. A model is proposed to describe the mechanism represented by the lag phase.  相似文献   

19.
The dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to reduce the reactivity of the ThDP cofactor through interactions with its thiazolium ring. The intermediates do not assume the often-postulated enamine state, but likely a carbanion state. The carbanion presumably facilitates the second E1b-catalyzed reaction, involving the transfer of an acyl moiety from the intermediate to a lipoic acid prosthetic group in the transacylase (E2b) component of the BCKDC. The tyrosine switch further remodels an E1b loop region to promote E1b binding to E2b. Our results illustrate the versatility of the tyrosine switch in coordinating the catalytic events in E1b by modulating the reactivity of reaction intermediates.  相似文献   

20.
The alpha(2)beta(2) tetrameric E1 component of the branched-chain 2-oxo acid (BCOA) dehydrogenase multienzyme complex is a thiamin diphosphate (ThDP)-dependent enzyme. E1 catalyzes the decarboxylation of a BCOA concomitant with the formation of the alpha-carbanion/enamine intermediate, 2-(1-hydroxyalkyl)-ThDP, followed by transfer of the 1-hydroxyalkyl group to the distal sulfur atom on the lipoamide of the E2 component. In order to elucidate the catalytic mechanism of E1, the alpha- and beta-subunits of E1 from Thermus thermophilus HB8 have been co-expressed in Escherichia coli, purified and crystallized as a stable complex, and the following crystal structures have been analyzed: the apoenzyme (E1(apo)), the holoenzyme (E1(holo)), E1(holo) in complex with the substrate analogue 4-methylpentanoate (MPA) as an ES complex model, and E1(holo) in complex with 4-methyl-2-oxopentanoate (MOPA) as the alpha-carbanion/enamine intermediate (E1(ceim)). Binding of cofactors to E1(apo) induces a disorder-order transition in two loops adjacent to the active site. Furthermore, upon binding of MPA to E1(holo), the loop comprised of Gly121beta-Gln131beta moves close to the active site and interacts with MPA. The carboxylate group of MPA is recognized mainly by Tyr86beta and N4' of ThDP. The hydrophobic moiety of MPA is recognized by Phe66alpha, Tyr95alpha, Met128alpha and His131alpha. As an intermediate, MOPA is decarboxylated and covalently linked to ThDP, and the conformation of the protein loop is almost the same as in the substrate-free (holoenzyme) form. These results suggest that E1 undergoes an open-closed conformational change upon formation of the ES complex with a BCOA, and the mobile region participates in the recognition of the carboxylate group of the BCOA. ES complex models of E1(holo).MOPA and of E1(ceim).lipoamide built from the above structures suggest that His273alpha and His129beta' are potential proton donors to the carbonyl group of a BCOA and to the proximal sulfur atom on the lipoamide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号