首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Action of endogenous abscisic acid (ABA) is absent in the ABA-deficient and -insensitive double mutant ( aba-1abi3–1 ) seeds of Arabidopsis thaliana . Thus, responses to osmotic stress and dehydration can be studied without interference of endogenous ABA. Seeds of this double mutunt are viable hut desiceation-intolerant. However, desiccation tolerance can he induced by either (1) slow dehydration of immature seeds; (2) treatment of immature seeds with osmotica or; (31 due to the leakiness of the ABA-insensitivty mutation, by application of exogenous ABA. Consequently it is concluded that either ABA or osmotic- or dehydration-stress and related gene expression meets the minimal requirements for acquisition of desiccation tolerance in seeds of Arabidopsis thalianna .  相似文献   

3.
4.
Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.  相似文献   

5.
In order to understand the molecular mechanisms which are responsible for desiccation tolerance in the resurrection plant Craterostigma plantagineum Hochst. a thorough analysis of the CDeT11-24 gene family was performed. CDeT11-24 comprises a small gene family whose genes are expressed in response to dehydration, salt stress and abscisic acid (ABA) treatment in leaves. The gene products are constitutively expressed in roots and disappear only when the plants are transferred to water. It is therefore suggested that the proteins are involved in sensing water status. The predicted proteins are very hydrophilic; they share some features with late-embryogenesis-abundant proteins, and sequence similarities were found with two ABA- and drought-regulated Arabidopsis genes. The analysis of β-glucuronidase reporter genes driven by the CDeT11-24 promoter showed high activity in mature seeds in both transgenic Arabidopsis and tobacco. In vegetative tissues the promoter activity in response to ABA was restricted to young Arabidosis seedlings. The responsiveness to ABA during later developmental stages was regained in the presence of the Arabidopsis gene product ABI3. Dehydration-induced promoter activity was only observed in Arabidopsis leaves at a particular developmental stage. This analysis indicates that some components in the signal transduction pathway of the resurrection plant are not active in tobacco or Arabidopsis. Received: 26 April 1997 / Accepted: 16 July 1997  相似文献   

6.
7.
植物在离开生长环境较短时间内(1~6 h)会导致缓慢的表面水分散失,引起自然的干旱胁迫。本文以耐旱植物长春花(Catharanthus roseus)为材料,研究其在离土干旱胁迫中的脱落酸(ABA)及可溶性糖含量变化。结果表明,长春花根部ABA含量在正常条件下低于叶片中的含量,干旱胁迫促进了ABA在根部的积累,6 h时增加至最高值。蔗糖酸性转化酶活性可能受到ABA的诱导在胁迫6 h时最高,比对照高出30%左右。长春花叶片中总可溶性糖含量在对照条件下非常稳定,但在干旱胁迫过程中,其随着时间的延长呈现线性增加的趋势(r2=0.964),蔗糖和已糖含量在胁迫过程中也呈增加的趋势,可能发挥着渗透调控节功能。  相似文献   

8.
ASR(ABA, stress, ripening induced protein)是一类响应植物干旱胁迫的关键转录因子, 在许多植物中已有报道, 然而尚未见香蕉(Musa acuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因, 即MaASR1(登录号为AY628102)。干旱胁迫下, 该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsis thaliana), Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现, 此两转基因株系的叶片变小且变厚; Northern和Western检测结果表明, MaASR1在L14和L38中表达。控水处理后, L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后, 对MaASR1转基因株系中ABA/胁迫响应基因的表达分析, 发现MaASR1可增强转基因株系对ABA信号的敏感度, 但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

9.
Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by the cytochrome P450 CYP707A family. Among four members of Arabidopsis CYP707As, the expression of CYP707A3 was most highly induced in response to both dehydration and subsequent rehydration. A T-DNA insertional cyp707a3-1 mutant contained higher ABA levels in turgid plants, which showed a reduced transpiration rate and hypersensitivity to exogenous ABA during early seedling growth. On dehydration, the cyp707a3-1 mutant accumulated a higher amount of stress-induced ABA than the wild type, an event that occurred relatively later and was coincident with slow drought induction of CYP707A3. The cyp707a3 mutant plants exhibited both exaggerated ABA-inducible gene expression and enhanced drought tolerance. Conversely, constitutive expression of CYP707A3 relieved growth retardation by ABA, increased transpiration, and a reduction of endogenous ABA in both turgid and dehydrated plants. Taken together, our results indicate that CYP707A3 plays an important role in determining threshold levels of ABA during dehydration and after rehydration.  相似文献   

10.
11.
12.
ABA信号转运调节的基因表达与源库动力学分析   总被引:1,自引:0,他引:1  
通过对拟南芥NCED3、AA03及SDR1蛋白亚细胞定位分析及根系和叶片ABA池的动态库变化研究,结果表明气孔运动的有效ABA信号来自于保卫细胞之外,SDR与ABA前体加工和运输有关。胁迫处理后根系合成酶基因转录水平显著高于叶片,但叶片ABA水平是根系的10倍以上,离体叶片和附体叶片ABA含量测定表明,叶片ABA池的形成主要决定于根源ABA的输入。氟啶酮药剂阻断和遮荫实验说明根系ABA池受叶源类胡萝素前体供应影响。叶片ABA水平受根源ABA和叶源类胡萝素前体库双向转运调节,维管束组织系统可能协同和整合了这一复杂调节机制。该结论为逆境ABA信号转递机制研究和操纵内源ABA含量增强植物抗逆性的应用提供相关资料。  相似文献   

13.
14.
15.
WRKY基因家族是主要存在于植物中的转录因子,拟南芥中至少有74个成员。根据锌指结构特征和WRKY结构域的数目,可以将WRKY转录因子分为三大类。拟南芥WRKY68属于第Ⅱ类WRKY蛋白。通过GUS染色和qRT PCR分析各组织部位的表达情况,发现WRKY68在根中的表达量是最高的,其次是幼嫩的叶片和老的荚果中。各种处理条件下的表达水平显示,IAA和高温处理后,WRKY68的表达明显上调,PstDC3000、JA、SA、NAA轻微诱导WRKY68的表达,而Botrytis、NaCl、甘露醇、PEG、脱水、ACC、ABA抑制WRKY68的表达,根据以上实验结果,我们推测WRKY68可能参与生长素和温度调控的植物形态建成及发育过程。  相似文献   

16.
植物对干旱胁迫的分子反应   总被引:33,自引:3,他引:33  
干旱胁迫是影响植物生长发育的主要因子,渗透保护剂的合成和积累,脱水伤害的修复,自由基清除酶和LEA蛋白基因表达的增量调节能增加植物的耐干旱性。植物在干旱条件下至少有4条信号转导途径,其中2条信号途径是依赖ABA的,另外2条途径是不依赖ABA的,在植物干旱胁迫的信号转导中,双组分的组氨酸激酶可能起渗透感受器的作用,Ca^2 和IP3可能是脱水信号的第2信使,转基因植物是一种评价编码蛋白功能的良好系统。  相似文献   

17.
Many TFIIIA‐type zinc finger proteins (ZFPs) play important roles in stress responses in plants. In the present study, a novel zinc finger protein gene, StZFP1, was cloned from potato. StZFP1 is a typical TFIIIA‐type two‐finger zinc finger gene with one B‐box domain, one L‐box domain and a DLN‐box/EAR motif. The StZFP1 genes belong to a small gene family with an estimated copy number of four or five, located on chromosome I. StZFP1 is constitutively expressed in leaves, stems, roots, tubers and flowers of adult plants. Expression of StZFP1 can be induced by salt, dehydration and exogenously applied ABA. StZFP1 expression is also responsive to infection by the late blight pathogen Phytophthora infestans. Transient expression analysis of StZFP1:GFP fusion protein revealed that StZFP1 is preferentially localised in the nucleus. Ectopic expression of StZFP1, driven by the Arabidopsis rd29A promoter in transgenic tobacco, increased plant tolerance to salt stress. These results demonstrate that StZFP1 might be involved in potato responses to salt and dehydration stresses through an ABA‐dependent pathway.  相似文献   

18.
Phospholipid metabolism is involved in plant responses to drought and salinity stress. To investigate the role of phospholipase D (PLD) and its product phosphatidic acid (PtdOH) in stress signalling, we isolated a novel PLD cDNA, designated AtPLDdelta, by screening a cDNA library prepared from dehydrated Arabidopsis thaliana. The AtPLDdelta protein, of 868 amino acids, has a putative catalytic domain and a C2 domain that is involved in Ca2+/phospholipid binding. The AtPLDdelta mRNA accumulated in response to dehydration and high salt stress. Histochemical analysis showed that the AtPLDdelta gene is strongly expressed in the vascular tissues of cotyledons and leaves under dehydration stress conditions. Under normal growth conditions, AtPLDdelta was expressed in roots, leaves, stems and flowers but not in siliques. We showed that dehydration stimulates the accumulation of PtdOH. The accumulation of PtdOH in response to dehydration was significantly suppressed in AtPLDdelta antisense transgenic plants. These results suggest that AtPLDdelta may be involved in PtdOH accumulation in the dehydration stress response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号