首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase   总被引:80,自引:0,他引:80  
K R Tindall  T A Kunkel 《Biochemistry》1988,27(16):6008-6013
We have determined the fidelity of in vitro DNA synthesis catalyzed at high temperature by the DNA polymerase from the thermophilic bacterium Thermus aquaticus. Using a DNA substrate that contains a 3'-OH terminal mismatch, we demonstrate that the purified polymerase lacks detectable exonucleolytic proofreading activity. The fidelity of the Taq polymerase was measured by two assays which score errors produced during in vitro DNA synthesis of the lacZ alpha complementation gene in M13mp2 DNA. In both assays, the Taq polymerase produces single-base substitution errors at a rate of 1 for each 9000 nucleotides polymerized. Frameshift errors are also produced, at a frequency of 1/41,000. These results are discussed in relation to the effects of high temperature on fidelity and the use of the Taq DNA polymerase as a reagent for the in vitro amplification of DNA by the polymerase chain reaction.  相似文献   

2.
Recombinant DNA molecules are often generated during the polymerase chain reaction (PCR) when partially homologous templates are available [e.g., see Pääbo et al. (1990) J. Biol. Chem. 265, 4718-4721]. It has been suggested that these recombinant molecules are a consequence of truncated extension products annealing to partially homologous templates on subsequent PCR cycles. However, we demonstrate here that recombinants can be generated during a single round of primer extension in the absence of subsequent heat denaturation, indicating that template-switching produces some of these recombinant molecules. Two types of template-switches were observed: (i) switches to pre-existing templates and (ii) switches to the complementary nascent strand. Recombination is reduced several fold when the complementary template strands are physically separated by attachment to streptavidin magnetic beads. This result supports the hypothesis that either the polymerase or at least one of the two extending strands switches templates during DNA synthesis and that interaction between the complementary template strands is necessary for efficient template-switching.  相似文献   

3.
Phe(667) in the conserved O-helix of Thermus aquaticus (Taq) DNA polymerase I (pol I) is known to be important for discrimination against dideoxy-NTPs. We show here that Phe(667) is also important for base selection fidelity. In a forward mutation assay at high polymerase concentration, wild type pol I catalyzed frequent A --> T and G --> T transversions and -1 frameshifts at nonreiterated sites involving loss of a purine immediately downstream of a pyrimidine. The mutants F667L and A661E,I665T,F667L exhibited large decreases in A --> T and G --> T transversions, and the triple mutant displayed reduction in the aforementioned -1 frameshifts as well. Kinetic analysis showed that the F667L and A661E,I665T,F667L polymerases discriminated against synthesis of A:A mispairs more effectively and catalyzed less extension of A:A mispairs than the wild type enzyme. These data indicate that Phe(667) functions in maintaining the error frequency and spectrum, and the catalytic efficiency, of wild type pol I. We also found that the strong general mutator activity conferred by the single A661E substitution was entirely suppressed in the A661E, I665T,F667L polymerase, exemplifying how interactions among O-helix residues can contribute to fidelity. We discuss the mutator and anti-mutator mutations in light of recently obtained three-dimensional structures of T. aquaticus pol I.  相似文献   

4.
DNA binding of the Type 1 DNA polymerase from Thermus aquaticus (Taq polymerase) and its Klentaq large fragment domain have been studied as a function of temperature. Equilibrium binding assays were performed from 5 to 70°C using a fluorescence anisotropy assay and from 10 to 60°C using isothermal titration calorimetry. In contrast to the usual behavior of thermophilic proteins at low temperatures, Taq and Klentaq bind DNA with high affinity at temperatures down to 5°C. The affinity is maximal at 40–50°C. The ΔH and ΔS of binding are highly temperature dependent, and the ΔCp of binding is –0.7 to –0.8 kcal/mol K, for both Taq and Klentaq, with good agreement between van’t Hoff and calorimetric values. Such a thermodynamic profile, however, is generally associated with sequence-specific DNA binding and not non- specific binding. Circular dichroism spectra show conformational rearrangements of both the DNA and the protein upon binding. The high ΔCp of Taq/Klentaq DNA binding may be correlated with structure-specific binding in analogy to sequence- specific binding, or may be a general characteristic of proteins that primarily bind non-specifically to DNA. The low temperature DNA binding of Taq/Klentaq is suggested to be a general characteristic of thermophilic DNA binding proteins.  相似文献   

5.
DNA polymerase from Thermus aquaticus has become a common reagent in molecular biology because of its utility in DNA amplification and DNA sequencing protocols. A simplified method is described here for isolating the recombinant Taq enzyme after overproduction in Escherichia coli. Purification requires 8 to 10 h and entails heat treating and clearing the E. coli lysate, followed by precipitation of the enzyme with polyethyleneimine and elution from Bio Rex 70 ion exchange resin in a single salt step. The resulting enzyme preparation contains a single, nearly homogeneous protein consistent with the previously established size of the Taq DNA polymerase in a yield of 40-50 mg of protein per liter of cell culture.  相似文献   

6.
Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis at different temperatures, incubation times, tNTP ratios and primer/template combinations. TNA synthesis by Therminator exhibits high fidelity under optimal conditions; the observed fidelity is sufficient to allow in vitro selection with TNA libraries of at least 200 nt in length.  相似文献   

7.
The O-helix of DNA polymerases has been implicated in substrate discrimination and replication fidelity. In this study, wild-type Thermus aquaticus DNA polymerase I (Taq pol I) and an O-helix mutant A661E was examined for their ability to discriminate between ribonucleotides and deoxyribonucleotides. Steady-state nucleotide extension kinetics were carried out using a template cytidine and each nucleotide dNTP and rGTP. Wild-type Taq pol I and A661E demonstrated similar Vmax and Km values for the correct nucleotide dGTP. However, A661E discriminated between incorrect and correct nucleotide less well than wild-type; discrimination was reduced by factors of 9.5-, 5.6- and 15-fold for dATP, dTTP and rGTP, respectively. These data suggest that A661E is efficient polymerases in the presence of the correct deoxynucleotide, dGTP, but it is impaired in ability to discriminate between correct and incorrect deoxyribonucleotides or between ribo- and deoxyribonucleotides. A structural model of Taq pol I is described in which the mutation A661E alters the interactions between the O-helix and the terminal two phosphate groups in the primer strand.  相似文献   

8.
A Chien  D B Edgar    J M Trela 《Journal of bacteriology》1976,127(3):1550-1557
A stable deoxyribonucleic acid (DNA) polymerase (EC 2.7.7.7) with a temperature optimum of 80 degrees C has been purified from the extreme thermophile Thermus aquaticus. The enzyme is free from phosphomonoesterase, phosphodiesterase and single-stranded exonuclease activities. Maximal activity of the enzyme requires all four deoxyribonucleotides and activated calf thymus DNA. An absolute requirement for divalent cation cofactor was satisfied by Mg2+ or to a lesser extent by Mn2+. Monovalent cations at concentrations as high as 0.1 M did not show a significant inhibitory effect. The pH optimum was 8.0 in tris(hydroxymethyl)aminomethane-hydrochloride buffer. The molecular weight of the enzyme was estimated by sucrose gradient centrifugation and gel filtrations on Sephadex G-100 to be approximately 63,000 to 68,000. The elevated temperature requirement, small size, and lack of nuclease activity distinguish this polymerase from the DNA polymerase of Escherichia coli.  相似文献   

9.
RT-PCR amplification of P450 2C6 from rat liver, using primers in opposite orientations of exon 6, resulted in PCR products containing segments of exons joined at non-consensus splice sites. Moreover, many of the PCR products identified were composed of not only a single region containing exonic segments joined at non-consensus splice sites but, instead, of several repeats of the non-canonically joined region. To investigate whether these PCR products represent pre-existing molecules or are generated during the amplification process, the liver cDNA template was replaced by a plasmid containing the P450 2C6 cDNA. Surprisingly, PCR products containing repeats of non-canonically joined exonic segments were again revealed. In some cases the position of this non-canonical joining was a sequence of one or two identical nucleotides; however, there were also a number of products lacking any nucleotide identity at the position of joining. DNA nicking and/or DNA damage is thought to favour recombination during PCR, probably by misalignment of incomplete DNA strands; however, the presence of multiple repeats of the recombined region in the PCR products identified suggests a certain repetitiveness of the underlying mechanism. It is therefore proposed that these products result from a template switching event that occurs several times during a single polymerization step, following a rolling circle model of DNA synthesis.  相似文献   

10.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

11.
G M Air  J I Harris 《FEBS letters》1974,38(3):277-281
  相似文献   

12.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

13.
14.
The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant.  相似文献   

15.
Improving the fidelity of Thermus thermophilus DNA ligase.   总被引:4,自引:0,他引:4       下载免费PDF全文
J Luo  D E Bergstrom    F Barany 《Nucleic acids research》1996,24(15):3071-3078
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled substrates to study the fidelity of Tth DNA ligase. The enzyme exhibits significantly greater discrimination against all single base mismatches on the 3'-side of the nick in comparison with those on the 5'-side of the nick. Among all 12 possible single base pair mismatches on the 3'-side of the nick, only T-G and G-T mismatches generated a quantifiable level of ligation products after 23 h incubation. The high fidelity of Tth DNA ligase can be improved further by introducing a mismatched base or a universal nucleoside analog at the third position of the discriminating oligonucleotide. Finally, two mutant Tth DNA ligases, K294R and K294P, were found to have increased fidelity using this assay.  相似文献   

16.
Substrate properties of dNTP analogues in the DNA synthesis reaction catalyzed by Thermus aquaticus DNA polymerase were studied. It was shown that most of dNTP analogues which were known as terminators of DNA synthesis of E. coli DNA polymerase I were able to terminate DNA synthesis catalyzed by Thermus aquaticus DNA polymerase. An interesting feature of Thermus aquaticus DNA polymerase was the ability to utilize 3'-azido-2',3'-dideoxythymidine triphosphate as terminating substrate. Relative efficiency of tested dNTP analogues incorporation into the DNA growing chain was estimated.  相似文献   

17.
G Sagner  R Rüger  C Kessler 《Gene》1991,97(1):119-123
A method for rapid identification of DNA polymerase activity employing an activated DNA substrate covalently bound to nitrocellulose membranes is described. Samples containing DNA polymerase are spotted and the membranes are incubated in an appropriate polymerization buffer containing radioactively labelled dNTPs. By autoradiography of the dried filters, DNA polymerase activity can be directly identified. The method can be used for fast and large-scale screening of chromosomal expression libraries for heterologous DNA polymerases characterized by activity optima different from those of the host organisms. We have identified the gene of the thermostable DNA polymerase from Thermus aquaticus in an expression library of Escherichia coli.  相似文献   

18.
A DNA aptamer specific for Thermus aquaticus DNA polymerase (Taq-polymerase) was immobilized on magnetic beads, which were prepared in the presented study. The effect of various parameters including pH, temperaturem and aptamer concentration on the immobilization of 5'-thiol labeled DNA-aptamer onto glutaric dialdhyde activated magnetic beads was evaluated. The binding conditions of Taq-polymerase on the aptamer immobilized magnetic beads were studied using commercial Taq-polymerase to characterize the surface complexation reaction. Efficiency of affinity magnetic beads in the purification of recombinant Taq-polymerase from crude extracts was also evaluated. For this case, the enzyme "recombinant Taq-DNA polymerase" was cloned and expressed using an Amersham E. coli GST-Gene Fusion Expression system. Crude extracts were in contact with affinity magnetic beads for 30 min and were collected by magnetic field application. The purity of the eluted Tag-polymerase from the affinity beads, as determined by HPLC, was 93% with a recovery of 89% in a one-step purification protocol. Apparently, the system was found highly effective as one step for the low-cost purification of Taq-polymerase in bacterial crude extract.  相似文献   

19.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号