首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
W G Luttge  M E Rupp 《Steroids》1989,53(1-2):59-76
Adult female mice were adrenalectomized and ovariectomized and the concentration of Type I and Type II receptors in whole brain, kidney, and liver cytosol determined at various time thereafter by incubation with [3H]aldosterone (+ RU 26988 to prevent binding to Type II receptors) or [3H]dexamethasone, respectively. Type I receptor binding in brain was found to undergo a dramatic biphasic up-regulation, with levels six times that of intact levels by 24 h post-surgery and a doubling again by 4-8 days post-surgery. By 16 days, however, Type I specific binding had returned to intact levels. Similar, but less dramatic fluctuations were seen in kidney and liver, whereas much smaller fluctuations were seen for Type II receptors in all three tissues. In a follow-up study with Scatchard analyses we observed a similar transient up- and down-regulation in maximal binding for Type I, and to a lesser extent Type II receptors in all three tissues. As expected, the apparent binding affinity for both receptors increased after surgical removal of competing endogenous steroids. Radioimmunoassays revealed that plasma concentrations of corticosterone were reduced to near undetectable levels by 24 h post-surgery. A direct comparison of male and female mice revealed no sex-related differences in Type I receptor binding capacity fluctuations in brain cytosol after adrenalectomy-gonadectomy. Lastly, treatment with exogenous aldosterone or corticosterone was found to prevent adrenalectomy-gonadectomy-induced up-regulation of Type I and, to a lesser extent, Type II receptors in brain. Somewhat surprisingly, the potency of these two adrenocorticosteroids appeared to be very similar for both receptor types.  相似文献   

2.
Adrenalectomized rat kidney is commonly used for the study of mineralocorticoid mechanism of action in mammals. In this model, aldosterone is known to bind to two classes of binding sites: type I (mineralocorticoid) and type II (glucocorticoid). The study of the aldosterone binding in normal rat kidney requires the elimination of endogenous hormones bound to each type of receptor. Thus, a suitable technique was developed using in situ perfusion of the kidneys. The efficacy of this method was of about 85 to 90% at the level of both cytoplasm and nucleus. Aldosterone binding capacity was checked in normal rat kidney after in situ perfusion and was found to be 300 to 500% lower than in adrenalectomized rat kidney, both in cytoplasm and nuclei. Computer analysis of aldosterone binding parameters in the cytoplasm (30,000 X g supernatant) of rat kidney suggested that adrenalectomy might induce an important rise in the number of mineralocorticoid receptors (congruent to 260%). An increase in the number of glucocorticoid receptors was also observed but appeared to be lower. Aldosterone, when perfused during 24 h in adrenalectomized rats, lowered the number of type I sites to the same level as observed in normal rat kidney. This effect was fully reversible after interruption of aldosterone perfusion. These results suggested an aldosterone-induced down regulation of mineralocorticoid receptors.  相似文献   

3.
Rats were fed 47 (deficient) and 606 ppm (adequate) magnesium with either 2,100 or 14,000 ppm sodium. Serum corticosterone and aldosterone levels were determined by randoimmunoassay in six rats from each treatment group killed on days 7, 14, and 28 of consumption of the experimental diets. Serum corticosterone levels were moderately, but not significantly, decreased in magnesium deficient animals. Serum aldosterone levels increased over time in the rats fed the lower sodium diet with adequate magnesium and were further elevated in magnesium deficient animals. In sodium loaded rats the increase in aldosterone levels in magnesium deficiency was less and occurred later. Retention and urinary excretion of sodium and potassium did not appear to be affected by magnesium status or the serum concentration of aldosterone. Possible mechanisms underlying the changes in aldosterone levels of magnesium depleted animals are discussed with reference to the known effects of magnesium deficiency on physiological functions.  相似文献   

4.
Pericryptal myofibroblast growth in descending colonic crypts correlates with the activation of the renin-angiotensin-aldosterone system. Earlier work showed that during the transition from a high-Na+ (HS) to low-Na+ (LS) diet there are changes in the colonic crypt wall and pericryptal sheath. As LS diet increases both aldosterone and angiotensin II, the aim here was to determine their individual contributions to the trophic changes in colonic crypts. Experiments were conducted on control and adrenalectomized Sprague-Dawley rats fed an HS diet and then switched to LS diet for 3 days and supplemented with aldosterone or angiotensin II. The actions of the angiotensin-converting enzyme inhibitor captopril, the angiotensin receptor antagonist losartan and the aldosterone antagonist spironolactone on extracellular matrix proteins, claudin 4 and E-cadherin myofibroblast proteins, α-smooth muscle actin (α-SMA) and OB-cadherin (cadherin 11), angiotensin type 1 and TGFβr1 membrane receptors were determined by immunolocalization in fixed distal colonic mucosa. The LS diet or aldosterone supplementation following ADX in HS or LS increased extracellular matrix, membrane receptors and myofibroblast proteins, but angiotensin alone had no trophic effect on α-SMA. These results show that aldosterone stimulates myofibroblast growth in the distal colon independently of dietary Na+ intake and of angiotensin levels. This stimulus could be a genomic response or secondary to stretch of the pericryptal sheath myofibroblasts accompanying enhanced rates of crypt fluid absorption.  相似文献   

5.
Elevated dietary salt intake has previously been demonstrated to have dramatic effects on microvascular structure and function. The purpose of this study was to determine whether a high-salt diet modulates physiological angiogenesis in skeletal muscle. Male Sprague-Dawley rats were placed on a control diet (0.4% NaCl by weight) or a high-salt diet (4.0% NaCl) before implantation of a chronic electrical stimulator. After seven consecutive days of unilateral hindlimb muscle stimulation, animals on control diets demonstrated a significant increase in microvessel density in the tibialis anterior muscle of the stimulated hindlimb relative to the contralateral control leg. High salt-fed rats demonstrated a complete inhibition of this angiogenic response, as well as a significant reduction in plasma ANG II levels compared with those of control animals. To investigate the role of ANG II suppression on the inhibitory effect of high-salt diets, a group of rats that were fed high salt were chronically infused with ANG II at a low dose. Maintenance of ANG II levels restored stimulated angiogenesis to control levels in animals fed a high-salt diet. Western blot analysis indicated that inhibition of angiogenesis in high salt-fed rats was not due to changes in VEGF or VEGF receptor type 1 protein expression in response to stimulation; however, the degree to which VEGF receptor 2 protein increased with stimulation was significantly lower in high salt-fed animals. This study demonstrates an inhibitory effect of high salt intake on stimulated angiogenesis and suggests a critical role for ANG II suppression in mediating this antiangiogenic effect.  相似文献   

6.
1. Melatonin and glucocorticoids are known to affect the immune response in an opposite mode. The probability for an interaction between these hormones in the thymus gland has been investigated in rats following chronic administration of exogenous melatonin and long-term exposure to variable levels of circulating glucocorticoids. 2. Daily melatonin administration was shown to affect the properties of corticosterone and progestin receptors in the thymus in the presence of normal and increased systemic corticosterone concentrations, but not in adrenalectomized animals. 3. In intact rats melatonin caused a marked increase in the affinity and a decrease in the density of thymic receptors for adrenal steroids. Following corticosterone overdosage, simultaneously with melatonin treatment, a decrease in receptor affinity and a relative increase in the number of binding sites was observed. 4. The results suggest that steroid hormone receptors in the thymus might be considered as a target site for the interaction between melatonin and adrenal steroids in the modulation of the immune response.  相似文献   

7.
In studies from several laboratories evidence has been adduced that renal Type I (mineralocorticoid) receptors and hippocampal "corticosterone-preferring" high affinity glucocorticoid receptors have similar high affinity for both aldosterone and corticosterone. In all these studies the evidence for renal mineralocorticoid receptors is indirect, inasmuch as the high concentrations of transcortin (CBG) in renal cytosol make studies with [3H]corticosterone as a probe difficult to interpret, given its high affinity for CBG. We here report direct binding studies, with [3H]aldosterone and [3H]corticosterone as probes, on hippocampal and renal cytosols from adrenalectomized rats, in which tracer was excluded from Type II dexamethasone binding glucocorticoid receptors with excess RU26988, and from CBG by excess cortisol 17 beta acid. In addition, we have compared the binding of [3H]aldosterone and [3H]corticosterone in renal cytosols from 10-day old rats, in which CBG levels in plasma and kidney are extremely low. Under conditions where neither tracer binds to type II sites or CBG, they label an equal number of sites (kidney 30-50 fmol/mg protein, hippocampus approximately 200 fmol/mg protein) with equal, high affinity (Kd 4 degrees C 0.3-0.5 nM). Thus direct tracer binding studies support the identity of renal Type I mineralocorticoid receptors and hippocampal Type I (high affinity, corticosterone preferring) glucocorticoid receptors.  相似文献   

8.
The effects of dietary docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, on blood pressure and some pressure-regulating systems were measured in young spontaneously hypertensive rats (SHR). Plasma aldosterone and corticosterone levels, adrenal aldosterone production in vitro, and characteristics of adrenal angiotensin receptors were measured after 6 weeks of diet. Renal cytochrome P450 (CYP) 4A gene expression and arachidonic acid metabolism by renal microsomes were also investigated. Plasma cholesterol, triglycerides, and high-density lipoprotein cholesterol were measured. Diets contained either corn/soybean oil alone (CSO), or oil enriched with DHA. After 6 weeks, rats fed DHA had systolic blood pressures averaging 34 mmHg less than controls (P < 0.001). Plasma aldosterone levels were 33% lower in the DHA-fed animals than in controls (22 +/- 3 vs. 33 +/- 3.7 ng/dl, P < 0.05). Plasma levels of corticosterone were 18% lower in animals fed DHA than in controls, but this difference was not statistically significant. Adrenal glomerulosa cells from DHA-fed rats produced less aldosterone in vitro in response to angiotensin II, ACTH, or potassium. The difference was less marked when aldosterone production was stimulated by supplying exogenous corticosterone, suggesting an effect of DHA on postreceptor steps in signal transduction or the early pathway of aldosteronogenesis. We found no significant differences in angiotensin receptor subtype, number, or affinity. Production of arachidonic epoxides by renal microsomes was 17% lower in DHA-fed animals than in controls (P < 0.05). Renal cortical mRNA levels of CYP4A genes and formation of 19- and 20-hydroxyeicosatetraenoic acid (HETE) did not differ between dietary groups. Plasma total cholesterol and high-density-lipoprotein (HDL) levels were significantly reduced in SHR fed the DHA supplement, but triglyceride levels were not significantly different. The effects of DHA on steroid and eicosanoid metabolism may be part of the mechanism by which this fatty acid prevents some of the hypertension in growing SHR.  相似文献   

9.
Very small amounts of adrenocorticosteroids are synthesized by brain tissue in vitro. While there is evidence suggesting that the synthesis of aldosterone in the brain may have a role in the hypertension of the Dahl salt-sensitive rat, the de novo synthesis of aldosterone or corticosterone within the brain of a living animal has not been demonstrated. We have used sensitive ELISAs to measure aldosterone and corticosterone in the plasma and whole brains of intact rats receiving a normal-, low-, or high-salt diet to alter adrenal aldosterone production and of adrenalectomized rats provided sodium replacement, some of which received aldosterone, corticosterone, or DOC replacement. The results of several experiments were consistent. In intact rats, the brain concentration of aldosterone and corticosterone reflected that in the plasma. However, whereas aldosterone and corticosterone were undetectable or barely undetectable in the plasma of adrenalectomized animals, as was the corticosterone in their brains, aldosterone was consistently found in the brains of adrenalectomized rats, ranging from a mean of 6.6-41 pg/g, depending on the experiment. Provision of DOC as substrate for the endogenous aldosterone synthase and 11beta-hydroxylase did not significantly increase brain aldosterone or corticosterone content. It is postulated that the small amounts of aldosterone synthesized in the brain could provide a local ligand for autocrine or paracrine activation of the mineralocorticoid receptor.  相似文献   

10.
A low-salt diet is known to decrease and salt excess to increase blood pressure in humans and rodents. Sex steroids seem to play a role in salt dependent hypertension. However, little is known about sex differences in mineralocorticoid receptor blockade between male and female rats. The objective of the work was at first to investigate the effects of a low-salt vs. a high-salt diet on blood pressure without the influence of gonadal steroids in male and female rats. Second, to determine the sex-specific effects of mineralocorticoid receptor blockade by spironolactone in high-salt and low-salt fed gonadectomized male and female animals. Normotensive male and female Wistar rats were gonadectomized and put on a low (NaCl<0.03%) or high (NaCl=4%) salt diet. On each diet animals received spironolactone or placebo. Blood pressure was measured by tail-cuff-method; 24-h urine samples were collected in metabolic cages and blood was collected for hormonal measurements. High-salt diet significantly increased systolic blood pressure in both sexes. This effect could be blocked effectively by spironolactone only in male rats. Spironolactone treatment significantly increased aldosterone levels in males and females independent of the sodium content of the diet. High sodium diet significantly increased relative kidney weight, which was not altered by spironolactone treatment. Independently of gonadal steroids a high-salt diet increased blood pressure in gonadectomized male and female rats. Spironolactone lowered blood pressure only in male not in female rats on a high-salt diet clearly indicating sex-specific effects of the mineralo-corticoid antagonist spironolactone.  相似文献   

11.
The muscle anabolic/anti-catabolic activity of the androgenic steroids testosterone and trenbolone was studied in rats to investigate whether such steroids act as agonists via muscle androgen receptors, or as antagonists that oppose the catabolic effects of endogenous glucocorticoids via their interaction with muscle glucocorticoid receptors. For comparison, the effects of the potent glucocorticoid antagonist RU486 were also examined. The parameters measured included growth rate, muscle weight, serum growth hormone and corticosterone levels, and receptor binding parameters in muscle cytosol. Females responded better than males to anabolic treatment with the androgenic steroids. Ovariectomy or adrenalectomy abolished this response. Neither the sex difference nor the requirement for ovaries or adrenals could be explained in terms of muscle receptor parameters or serum growth hormone levels. The muscle anabolic activity of androgenic steroids was restored when castrated males were treated with oestradiol and when adrenalectomized females were treated with corticosterone. RU486 also prevented the catabolic/anti-anabolic activity of exogenous corticosterone in adrenalectomized rats. Testosterone and RU486 behaved as anti-glucocorticoids in vivo since they inhibited glucocorticoid-induced liver tyrosine aminotransferase activity. The results suggest that anabolic steroids can act via muscle glucocorticoid receptors, thereby antagonizing the catabolic activity of endogenous glucocorticoids, rather than via muscle androgen receptors.  相似文献   

12.
Mechanisms underlying cardiac fibrogenesis in magnesium deficiency are unclear. It was reported earlier from this laboratory that serum from magnesium-deficient rats has a more pronounced stimulatory effect on cell proliferation, net collagen production, and superoxide generation in adult rat cardiac fibroblasts than serum from rats on the control diet. The profibrotic serum factors were, however, not identified. This study tested the hypothesis that circulating angiotensin II may modulate cardiac fibroblast activity in hypomagnesemic rats. Male Sprague-Dawley rats were pair-fed a magnesium-deficient (0.0008% Mg) or -sufficient (0.05%) diet for 6 days, and the effects of serum from these rats on [3H]thymidine and [3H]proline incorporation into cardiac fibroblasts from young adult rats were evaluated in the presence of losartan, an angiotensin II type 1 (AT1) receptor antagonist, and spironolactone, an aldosterone antagonist. Losartan and spironolactone markedly attenuated the stimulatory effects in vitro of serum from the magnesium-deficient and control groups, but the inhibitory effects were considerably higher in cells exposed to serum from magnesium-deficient animals. Circulating and cardiac tissue levels of angiotensin II were significantly elevated in magnesium-deficient animals (67.6% and 93.1%, respectively, vs. control). Plasma renin activity was 61.9% higher in magnesium-deficient rats, but serum angiotensin-converting enzyme activity was comparable in the two groups. Furthermore, preliminary experiments in vivo using enalapril supported a role for angiotensin II in magnesium deficiency. There was no significant difference between the groups in serum aldosterone levels. The findings suggest that circulating angiotensin II and aldosterone may stimulate fibroblast activity and contribute to a fibrogenic response in the heart in magnesium deficiency.  相似文献   

13.
14.
Rat models of genetic hypertension include spontaneous hypertension and resistance or sensitivity to mineralocorticoid and salt induced hypertension. Previously, altered aldosterone binding to corticoid receptor I was found in aortic smooth muscle cells cultured from Fischer 344 rats which are extremely resistant to steroid and salt induced hypertension. The corticoid receptor I of Fisher 344 rats had a lower affinity than that of salt sensitive Wistar-Kyoto controls, as well as spontaneously hypertensive rats and Sprague-Dawley rats. In the present study, we have used DEAE-cellulose ion exchange chromatography to compare the structure (charge properties) and steroid specificity of vascular corticoid receptor I and II sites in these same rat hypertension models. No variations in ion exchange properties of type I and II receptors were found. Together with the lower aldosterone affinity of corticoid receptor I sites in Fischer 344 rats these data suggest an altered binding domain which is not seen as a difference in charge density of the receptor protein by ion exchange chromatography.  相似文献   

15.
Water-restricted rats exhibit a rapid decrease in plasma corticosterone after drinking. The present study examined the effect of restriction-induced drinking on plasma aldosterone and plasma clearance of corticosterone. Rats were water restricted for 6-7 days and then killed before or 15 min after water administration; plasma and adrenal hormones were assayed. Plasma and adrenal corticosterone decreased after drinking without a change in plasma corticosteroid-binding globulin; plasma ACTH decreased or did not change. In contrast, plasma aldosterone did not change or increased after drinking; plasma renin activity was elevated by water restriction and increased further after drinking. In another experiment, rats were adrenalectomized, and corticosterone and aldosterone were replaced with pellets and osmotic minipumps, respectively. Rats were water restricted and killed. There was a small decrease in plasma corticosterone but no change in aldosterone after drinking in adrenalectomized animals. These data suggest that changes in plasma steroids after restriction-induced drinking result from zone-specific responses of the adrenal to known secretagogues, with minimal contribution from increased plasma clearance.  相似文献   

16.
Abstract: To investigate the effects of type I (mineralocorticoid) and type II (glucocorticoid) receptor activation on striatal neuropeptide [preproenkephalin (PPE), preprotachykinin (PPT), and preprodynorphin (DYN)] mRNA and midbrain cholecystokinin (CCK) mRNA as well as striatal tyrosine hydroxylase radioimmunoreactivity (TH-RIC) levels, we administered either replacement levels of corticosterone (CORT; 0.5 mg/kg/day, s.c.) or pharmacological levels of deoxycorticosterone acetate (DOCA; a mineralocorticoid steroid with ability to bind to type I and type II receptors; 5 mg/kg, s.c.) to adrenalectomized adult male rats. After 1 week of recovery from adrenalectomy surgery, animals were injected daily with sesame oil or CORT for 1, 3, or 7 days or DOCA for 3 or 7 days and killed 16 h after the last injection. Adrenalectomy resulted in a decrease in all three striatal neuropeptide mRNA levels, compared with sham-operated rats. CORT replacement resulted in recovered PPE and PPT mRNA levels after 1 day and elevated PPE mRNA levels over those in sham-operated controls after 3 days. In contrast, DYN mRNA levels showed recovery after 7 days of CORT replacement. Results after DOCA treatment largely paralleled those after CORT replacement. There were no significant treatment effects on indirect markers of midbrain dopaminergic activity, i.e., CCK mRNA and TH-RIC. From these results we conclude that compared with striatal tachykinin and dynorphinergic neurons, enkephalinergic cells show greater sensitivity, whereas the dopaminergic system, including mesencephalic CCK, demonstrates an insensitivity to physiological CORT and to pharmacological DOCA treatment.  相似文献   

17.
The modulation of the phase I and phase II biotransformation enzymes upon treatment with tobacco extract (TE) and N'-nitrosonornicotine (NNN) was investigated using male Sprague-Dawley rats fed differential protein diets. It was observed that the animals fed a low protein diet showed an overall decrease in the basal levels of hepatic and pulmonary phase I and II enzymes. TE and NNN significantly decreased the detoxifying system in the low-protein-fed animals. Animals fed 20% protein, however, showed significant increases in glutathione and glutathione S-transferase upon treatment. Furthermore, TE and NNN treatment brought about a significant depletion in the hepatic pool of vitamin A with a concomitant increase in the vitamin C levels.  相似文献   

18.
Renal 11beta-hydroxysteroid dehydrogenase 2 (HSD2) catalyzes the conversion of active glucocorticoids to inert 11beta-keto compounds, thereby preventing the illicit binding of these hormones to mineralocorticoid receptors (MRs) and, thus, conferring aldosterone specificity. Absence or inhibition of HSD2 activity, originates a hypertensive syndrome with sodium retention and increased potassium elimination. Recent studies from our laboratory reported an increment of HSD2 activity in intact-stressed rats. To evaluate the adrenal involvement in this increase, we analyzed HSD2 activity and protein abundance in Intact, Sham-operated, and adrenalectomized rats under stress situations (gavage with an overload of 200 mM HCl (10 ml) and simulated gavage) or with corticosterone replacement. HSD2 activity was assessed in renal microsomal preparations obtained from different groups of animals. HSD2 protein abundance was measured by Western-blot. Circulating corticosterone was determined by radioimmunoassay. Sham-operated animals showed an increase in HSD2 activity and abundance compared to Intact and adrenalectomized rats suggesting the involvement of stress-related adrenal factors in HSD2 regulation. In the case of acidotic adrenalectomized animals, there was an increase in renal HSD2 activity when, along with the HCl overload, the rats were injected with corticosterone. This increment occurred without an increase in enzyme abundance. These results suggest the importance of circulating levels of glucocorticoids to respond to a metabolic acidosis, through regulation of HSD2 stimulation. The group subjected to a simulated gavage showed an increase in enzyme activity and protein abundance, thus demonstrating the need for both adrenal and extra-factors in the modulation of renal HSD2. The adrenalectomized animals injected with different doses of corticosterone, produced a progressive increase in enzyme activity and abundance, being significant for the dose of 68 microg corticosterone/100 g body weight. The highest dose (308 microg/100 g body weight) did not show any variation in activity and abundance compared to the control group. This biphasic effect of glucocorticoids could be explained taking into account their permissive and suppressive actions, depending on their blood levels. Knowing that stress induces multifactorial responses, it should not be surprising to observe a differential regulation in renal HSD2, confirming that different stressors act through different factors of both, adrenal and extra-adrenal origin.  相似文献   

19.
Regulation of atrial natriuretic hormone (ANH) receptor binding and aldosterone suppression was studied in isolated adrenal glomerulosa cells from rats fed a high-salt (HS) or low-salt (LS) diet for 3 days. In plasma of HS rats, aldosterone levels were 5 times lower and immunoreactive ANH two times higher than in LS rats. Competitive binding studies showed the same affinity for human atrial natriuretic hormone (hANH) in both pools of cells, but receptor density was 50% higher on LS cells. A linear ANH analog that binds to non-guanylate-cyclase-coupled receptors did not show increased binding to LS cells. Cyclic GMP production in response to hANH was identical in both groups. The aldosterone-inhibitory effect of hANH on both groups of basal and angiotensin II-stimulated cells was also identical. Thus a short-term high-salt diet causes decreased density of ANH receptors in glomerulosa cells without changing biological activity of ANH. These results suggest that dietary salt content changes the number of ANH receptors and that non-guanylate-cyclase-coupled receptors contain at least two classes of receptors.  相似文献   

20.
Banu SK  Govindarajulu P  Aruldhas MM 《Steroids》2002,67(13-14):1007-1014
Thyroid gland is one of the non-classical target organs for sex steroids. Presence of androgen and estrogen receptors in the neoplastic and non-neoplastic thyroid glands of mammalian species is well documented. The aim of the present study is to elucidate the changes in serum and thyroidal sex steroids, and their receptors in the thyroid gland of rats from immature to adult age under gonadectomized (GDX) and sex steroids replaced conditions. Normal Wistar male and female rats from immature to adult age (day 21, 30, 45, 60 and 160 post-partum (pp)) were used in the present study. One group (I) of rats was GDX at an early age (day 10 pp) and the other group (II) at the adult age (day 120 pp). Group I rats were sacrificed at different experimental periods such as 21, 30, 45 and 60 days pp, and group II rats were sacrificed at day 160 pp. Another group of GDX rats from group I and II were replaced with physiological doses of testosterone or estradiol. Serum and thyroidal concentrations of sex steroids were estimated by RIA method and the concentrations of receptors by radioreceptor assay. Gonadectomy significantly decreased serum and thyroidal testosterone and estradiol and concentrations of androgen receptor (AR) and estrogen receptor (ER) in the thyroid. Replacement of sex steroids to GDX rats restored the normal level of sex steroids, AR and ER. Therefore, it is suggested from the present study that (i). sex steroids up-regulate their own receptors in the thyroid, (ii). sex steroids may influence thyroid growth and the proliferation of thyrocytes by modulating their receptor concentrations in the thyroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号