首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perkinsus marinus is responsible for disease and mortality of the American oyster, Crassostrea virginica. To investigate the interactions between P. marinus and oyster hemocytes, protease activity was measured in plasma of oysters collected 4 hr, 24 hr, 4 days, and 2 mo after experimental infection with P. marinus. A significant increase in protease activity was observed in oyster plasma 4 hr after injection with P. marinus, followed by a sharp decrease within 24 hr. Gelatin-impregnated gel electrophoresis showed the presence of 2 major bands (60 and 112 kDa) and 3 less prevalent bands (35, 92, and 200 kDa) with metalloproteinaselike activity in the plasma of noninfected oysters. Additional bands in the 40- to 60-kDa range, corresponding to P. marinus serine proteases, were observed in oyster plasma at early time points after infection. A transient, but significant, decrease in the activity of oyster metalloproteinases was observed at early time points after infection. Coincubation of oyster plasma with P. marinus extracellular products resulted in a decrease in oyster metalloproteinases and several P. marinus proteases. This study provides insights into the role of proteases in the pathogenesis of Dermo disease.  相似文献   

2.
A serine protease inhibitor was purified from plasma of the eastern oyster, Crassostrea virginica. The inhibitor is a 7609.6 Da protein consisting of 71 amino acids with 12 cysteine residues that are postulated to form 6 intra-chain disulfide bridges. Sequencing of the cloned cDNA identified an open reading frame encoding a polypeptide of 90 amino acids, with the 19 N-terminal amino acids forming a signal peptide. No sequence similarity with known proteins was found in sequence databases. The protein inhibited the serine proteases subtilisin A, trypsin and perkinsin, the major extracellular protease of the oyster protozoan parasite, Perkinsus marinus, in a slow binding manner. The mechanism of inhibition involves a rapid binding of inhibitor to the enzyme to form a weak enzyme-inhibitor complex followed by a slow isomerization to form a very tight binding enzyme-inhibitor complex. The overall dissociation constants K(i) with subtilisin A, perkinsin and trypsin were 0.29 nM, 13.7 nM and 17.7 nM, respectively. No inhibition of representatives of the other protease classes was detected. This is the first protein inhibitor of proteases identified from a bivalve mollusk and it represents a new protease inhibitor family. Its tight binding to subtilisin and perkinsin suggests it plays a role in the oyster host defense against P. marinus.  相似文献   

3.
Invertebrates display effective innate immune responses for defense against microbial infection. However, the protozoan parasite Perkinsus marinus causes Dermo disease in the eastern oyster Crassostrea virginica and is responsible for catastrophic damage to shellfisheries and the estuarine environment in North America. The infection mechanisms remain unclear, but it is likely that, while filter feeding, the healthy oysters ingest P. marinus trophozoites released to the water column by the infected neighboring individuals. Inside oyster hemocytes, trophozoites resist oxidative killing, proliferate, and spread throughout the host. However, the mechanism(s) for parasite entry into the hemocyte are unknown. In this study, we show that oyster hemocytes recognize P. marinus via a novel galectin (C. virginica galectin (CvGal)) of unique structure. The biological roles of galectins have only been partly elucidated, mostly encompassing embryogenesis and indirect roles in innate and adaptive immunity mediated by the binding to endogenous ligands. CvGal recognized a variety of potential microbial pathogens and unicellular algae, and preferentially, Perkinsus spp. trophozoites. Attachment and spreading of hemocytes to foreign surfaces induced localization of CvGal to the cell periphery, its secretion and binding to the plasma membrane. Exposure of hemocytes to Perkinsus spp. trophozoites enhanced this process further, and their phagocytosis could be partially inhibited by pretreatment of the hemocytes with anti-CvGal Abs. The evidence presented indicates that CvGal facilitates recognition of selected microbes and algae, thereby promoting phagocytosis of both potential infectious challenges and phytoplankton components, and that P. marinus subverts the host's immune/feeding recognition mechanism to passively gain entry into the hemocytes.  相似文献   

4.
5.
Populations of eastern oysters Crassostrea virginica along the east coast of North America have repeatedly experienced epizootic mass mortality due to infections by protozoan parasites, and molecular diagnostic methodologies are fast becoming more widely available for the diagnosis of protozoan diseases of oysters. In this study we applied a modified version of an existing multiplex polymerase chain reaction (PCR) for detection of the eastern oyster parasites Haplosporidium nelsoni, H. costale and Perkinsus marinus from field-collected samples. We incorporated primers for DNA quality control based on the large subunit ribosomal RNA (LSU rRNA) gene of C. virginica. The multiplex PCR (MPCR) simultaneously amplified genomic DNA of C. virginica, and cloned DNA of H. nelsoni, P. marinus and H. costale. In field trial applications, we compared the performance of the MPCR to that of the conventional diagnostic techniques of histopathological tissue examination and the Ray/Mackin fluid thioglycollate medium (RMFT) assay. A total of 530 oysters were sampled from 18 sites at 12 locations along the east coast of the United States from the Gulf of Mexico to southern New England. The modified MPCR detected 21% oysters with H. nelsoni, 2% oysters with H. costale, and 40% oysters with P. marinus infections. In comparison, histopathological examination detected H. nelsoni and H. costale infections in 6 and 0.8% oysters, respectively, and the RMFT assay detected P. marinus infection in 31% oysters. The MPCR is a more sensitive diagnostic assay for detection of H. nelsoni, H. costale, and P. marinus, and incorporation of an oyster quality control product limits false negative results.  相似文献   

6.
The protozoan oyster parasite Perkinsus marinus can be cultured in vitro in a variety of media; however, this has been associated with a rapid attenuation of infectivity. Supplementation of defined media with products of P. marinus-susceptible (Crassostrea virginica) and -tolerant (Crassostrea gigas, Crassostrea ariakensis) oysters alters proliferation and protease expression profiles and induces differentiation into morphological forms typically seen in vivo. It was not known if attenuation could be reversed by host extract supplementation. To investigate correlations among these changes as well as their association with infectivity, the effects of medium supplementation with tissue homogenates from both susceptible and tolerant oyster species were examined. The supplements markedly altered both cell size and proliferation, regardless of species; however, upregulation of low-molecular-weight protease expression was most prominent with susceptible oysters extracts. Increased infectivity occurred with the use of oyster product-supplemented media, but it was not consistently associated with changes in cell size, cell morphology, or protease secretion and was not related to the susceptibility of the oyster species used as the supplement source.  相似文献   

7.
8.
Dermo disease in the eastern oyster (Crassostrea virginica) is caused by an intracellular protistan parasite Perkinsus marinus. The progression and outcome of this disease is determined by a complex interplay between the host's immunity and parasite's escape mechanisms, both of which can be influenced by environmental pollutants including heavy metals such as copper (Cu). The goal of the present study was to determine the effects of Cu on the levels of apoptosis (which can serve as an important host defense mechanism) in oyster immune cells (hemocytes) in?vitro and in?vivo as well as on the establishment of P.?marinus infections in?vivo. Surprisingly, Cu exerted opposing effects on apoptosis levels of hemocytes in?vitro and in?vivo, stimulating apoptosis in isolated hemocytes but suppressing it during Cu exposure of whole oysters. The mechanisms of this effect are presently unknown and may be related to the different bioavailability of the metal in?vitro and in?vivo. As expected, Cu accumulated in oyster soft tissues during in?vitro exposure. Unexpectedly, this metal also strongly accumulated in hemolymph plasma which is classically considered isoionic with the surrounding seawater, likely reflecting the presence of soluble Cu-binding proteins in oyster plasma. Cu reduced growth of P.?marinus in?vitro and greatly reduced infection levels of hemocytes in?vivo, presumably by direct toxic effects on the parasite. As a possible parasitic counterbalance, Cu accumulation in the hemocytes was reduced by P.?marinus infection, although this reduction was not sufficient to prevent the parasiticidal effects of the heavy metal in?vivo. This effect of Cu may be useful as a potential therapeutic against Dermo disease in aquaculture conditions. Overall, this study provides important new insights into the potential role of environmental metals in host-parasite relationships and disease dynamics in C.?virginica.  相似文献   

9.
Several histones and histone-derived peptides have been shown to have antimicrobial activity and a potential role in innate immune defenses. A histone H4 sequence was identified in a subtractive suppression library containing genes upregulated in American cupped oysters, Crassostrea virginica, in response to challenge with the protozoan parasite Perkinsus marinus. Oyster histone H4 protein levels significantly increased in hemocyte lysates and cell free hemolymph of oysters experimentally challenged with P. marinus. The complete histone H4 coding sequence of C. virginica was cloned into a Saccharomyces cerevisiae yeast expression system and recombinant expression was confirmed using SDS-PAGE analysis and western blot. Delivery of yeast cells expressing recombinant oyster histone H4 into the gut of brine shrimp, Artemia salinas, challenged with a streptomycin resistant strain of Vibrio anguillarum resulted in a significant and dose-dependent decrease in the load of V. anguillarum. Purified recombinant histone H4 showed antimicrobial activity against V. anguillarum and Escherichia coli at micromolar concentrations, but did not affect the viability of P. marinus in culture. These results support the role of histone H4 in the defense of oysters against bacterial infection and validate the use of a novel oyster antimicrobial H4 in a yeast feed-based delivery system for the treatment of bacterial infections in aquaculture applications.  相似文献   

10.
Urastoma cyprinae occurs on the gills of various bivalves species, including the eastern oyster Crassostrea virginica. While the worm is known to cause severe gill disruption in mussels, no evidence of this nature has been described for oysters. Nonetheless, high levels of U. cyprinae have been reported in oysters, which may, in turn, reduce the oyster's overall condition. U. cyprinae is strongly attracted to oyster gill mucus, which is suggested to play an active role in the worm's feeding activities. Furthermore, host mucus contains many active components, including proteases, which have been suggested to play a defensive role against invading organisms. It follows, therefore, that some of the interactions between U. cyprinae and oysters take place in host gill mucus. Studies were undertaken to determine whether the presence of U. cyprinae altered the electrophoretic profiles of oyster gill mucus, using proteases as indicators. Findings reveal that oyster gill mucus contains three proteases, a putative acid protease at 96 kDa, a zinc metalloprotease at 64 kDa, and a serine protease at 33 kDa. Results based on experiments using mucus preparations extracted from infected and noninfected oysters, along with those using lyophilized mucus incubated with live U. cyprinae, confirm that the presence of U. cyprinae alters the protease composition of gill mucus. The present data demonstrate that both U. cyprinae and host gill mucus actively secrete proteases. While the precise roles of these enzymes still need to be defined, one of their functions may be associated with digestion-related activities induced by the worm.  相似文献   

11.
A quantitative competitive polymerase chain reaction (QCPCR) assay was developed for the oyster parasite Perkinsus marinus. PCR primers for the rRNA gene region of P. marinus amplified DNA isolated from P. marinus but not from Perkinsus atlanticus, Crassostrea virginica, or the dinoflagellates Peridinium sp., Gymnodinium sp., or Amphidinium sp. A mutagenic primer was used to create a competitor plasmid molecule identical to the P. marinus target DNA sequence except for a 13-bp deletion. Both P. marinus and competitor DNA amplified with equivalent efficiencies. Each of 25 oysters was processed by 5 P. marinus diagnostic methods--Ray's fluid thioglycollate medium (FTM) tissue assay, FTM hemolymph assay, whole oyster body burden assay, QCPCR of combined gill and mantle (gill/mantle) tissue, and QCPCR of hemolymph. The QCPCR assay enabled detection of 0.01 fg of P. marinus DNA in 1.0 microg of oyster tissue. QCPCR of gill/mantle tissue or hemolymph as well as the body burden assay detected infections in 24 of 25 oysters. Ray's FTM tissue assay detected only 19 infections. The FTM hemolymph assay detected only 22 infections. Regression analysis of QCPCR results and FTM results indicated that the QCPCR assays were effective in quantitating P. marinus infections in oyster tissues.  相似文献   

12.
Apoptosis, or programmed cell death, has been reported as being pivotal in infectious diseases of different organisms. The effects of apoptosis on the progression and transmission of the protistan parasites Perkinsus marinus and Haplosporidium nelsoni in the eastern oyster Crassostrea virginica were studied. Oysters were diagnosed for their respective infections by standard methods, and apoptosis was detected using in situ hybridization to detect DNA fragments by end labeling on paraffin sections. A digoxigenin nucleotide probe was used to label the 200 bp fragment produced by apoptosis and detected immunohistochemically using an antidigoxigenin peroxidase conjugate. The probe/DNA fragment complex was stained with a peroxidase substrate and tissues were counterstained with methyl green. Uninfected oysters had large numbers of apoptotic hemocytes present in the connective tissue underlying the stomach, gill, and mantle epithelia, whereas oysters infected with P. marinus had a reduced number of apoptotic hemocytes. The parasite may prevent hemocyte apoptosis in order to yield a greater number of hemocytes in which to house itself. Large numbers of P. marinus cells in some infected oysters were eliminated via apoptosis in the stomach epithelia, disabling the spread of infectious particles through seawater. The oysters infected with H. nelsoni also had reduced numbers of apoptotic hemocytes, while part of the vesicular connective tissue cells were apoptotic. H. nelsoni plasmodia were eliminated via apoptosis in some oysters. Apoptosis may enhance progression and prevent transmission of infectious oyster diseases.  相似文献   

13.
Lysozyme was purified from the plasma of eastern oysters (Crassostrea virginica) using a combination of ion exchange and gel filtration chromatographies. The molecular mass of purified lysozyme was estimated at 18.4 kDa by SDS-PAGE, and its isoelectric point was greater than 10. Mass spectrometric analysis of the purified enzyme revealed a high-sequence homology with i-type lysozymes. No similarity was found however between the N-terminal sequence of oyster plasma lysozyme and N-terminal sequences of other i-type lysozymes, suggesting that the N-terminal sequences of the i-type lysozymes may vary to a greater extent between species than reported in earlier studies. The optimal ionic strength, pH, cation concentrations, sea salt concentrations, and temperature for activity of the purified lysozyme were determined, as well as its temperature and pH stability. Purified oyster plasma lysozyme inhibited the growth of Gram-positive bacteria (e.g., Lactococcus garvieae, Enterococcus sp.) and Gram-negative bacteria (e.g., Escherichia coli, Vibrio vulnificus). This is a first report of a lysozyme purified from an oyster species and from the plasma of a bivalve mollusc.  相似文献   

14.
We have isolated and biochemically characterized superoxide dismutase (SOD) activity in cell extracts of clonally cultured Perkinsus marinus, a facultative intracellular parasite of the Eastern oyster, Crassostrea virginica. In order to assess the SOD activity throughout the purification, we developed and optimized a 96-well-plate microassay based on the inhibition of pyrogallol oxidation. The assay was also adapted to identify SOD activity type (Cu/Zn-, Mn-, or FeSOD), even in mixtures of more than one type of SOD. All SOD activity detected in the cell extracts was of the FeSOD type. Most of the SOD activity in P. marinus trophozoites resides in a major component of subunit molecular weight 24 kDa. The protein was purified by affinity chromatography on an anti-SOD antibody-Sepharose column. Amino-terminal peptide sequence of the affinity-purified protein corresponds to the predicted product of the PmSOD1 gene and indicates that amino-terminal processing has taken place. The results are discussed in the context of processing of mitochondrially targeted SODs.  相似文献   

15.
The protozoan Perkinsus marinus is considered the most important pathogen of the eastern oyster Crassostrea virginica, causing high mortality in natural and farmed oysters on the Atlantic coast of the US. In Mexico, no serious P. marinus epizootic has been reported. This study describes the current state of P. marinus prevalence in Terminos Lagoon (Mexico) associated with environmental factors including salinity, temperature, ammonium, nitrate, nitrite, silica, and phosphorus. In addition, the association of physiological (hemocyte density, protein concentration) and immunological (lysozyme, agglutination) parameters with the infection were studied. The prevalence was significantly different among seasons with mean values of 70, 23, and 7% in the dry (February to May), rainy (June to September) and north-wind (October to January) seasons, respectively. Only light infection intensity (Mackin scale value < 1) was observed. Prevalence of P. marinus was associated with seasonal salinity, phosphorus, and silica variations. Comparisons of oyster health demonstrates that the rainy and north-wind seasons are stressful periods. Redundancy analysis showed that only 34% of the variation in seasonal P. marinus prevalence was explained by protein concentration (21%), lysozyme (12%), and agglutination (1%). Overall, the data suggest that freshwater input associated with high nutrient concentrations during the rainy and north-wind seasons has a strong negative effect on P. marinus prevalence and also influences the oysters' physiology. It is probable that this seasonal stress was responsible for the absence of an epizootic event in Terminos Lagoon.  相似文献   

16.
ABSTRACT. Perkinsus marinus , a pathogen of eastern oysters ( Crassostrea virginica ), has been successfully propagated in vitro. Cultures of the parasite were initiated from heart fragments of an infected oyster. the cultured protozoan (designated Parkinsus -1) was similar in morphology at both the light and transmission electron microscopy levels to histozoic stages of P. marinus in naturally infected oysters. In addition, cultured cells incubated in fluid thioglycollate medium produced enlarged cells (prezoosporangia) that stained blue-black in Lugol's solution, a response characteristic to Perkinsus spp. and used in routine diagnosis. Polyclonal antibodies raised against P. marinus prezoosporangia reacted positively to Perkinsus -1. Finally, the cultured cells infected susceptible oysters and reisolation of Perkinsus -1 cells was possible from the hearts of experimentally infected oysters. the culture medium contained most of the known constituents of cell-free hemolymph of oysters. the success achieved in culturing P. marinus will allow further investigations aimed at reducing mortalities caused by this important oyster pathogen and at addressing many unanswered questions about its biology and pathobiology.  相似文献   

17.
The in vitro culture of the Eastern oyster parasite Perkinsus marinus has provided a unique opportunity to examine its susceptibility to putative recognition and effector defense mechanisms operative in refractory bivalve species. In this study, we report the effect of supplementing the culture medium with plasma from: (1) uninfected to heavily infected Eastern oysters; (2) oyster species considered to be disease-resistant; and (3) bivalve mollusk species that are naturally exposed to the parasite but show no signs of disease. We also examined in vitro the interaction between hemocytes from Crassostrea virginica and C. gigas and P. marinus trophozoites. Our results revealed a significant decrease (32%) in proliferation of P. marinus in the presence of plasma from heavily infected C. virginica oysters. The inhibitory effects were less pronounced with plasma from moderately infected and uninfected oysters. In contrast, plasma from C. rivularis and C. gigas enhanced P. marinus proliferation. Proliferation was significantly reduced in media supplemented with plasma from Mytilus edulis, Mercenaria mercenaria, and Anadara ovalis. The highest inhibitory activity was apparent in M. edulis, for which 5% plasma-supplemented medium reduced growth by 35% relative to the controls. M. edulis active component(s) was heat-stable, yet pronase-sensitive. The significantly higher uptake of live P. marinus trophozoites by hemocytes from C. virginica, relative to those from C. gigas, suggests a certain level of specificity in the recognition/endocytosis of the parasite by its natural bivalve host species.  相似文献   

18.
Perkinsus species are protistan parasites of molluscs. In Chesapeake Bay, Perkinsus marinus, Perkinsus chesapeaki, and Perkinsus andrewsi are sympatric, infecting oysters and clams. Although P. marinus is a pathogen for Crassostrea virginica, it remains unknown whether P. andrewsi and P. chesapeaki are equally pathogenic. Perkinsus species have been reported in C. virginica as far north as Maine, sometimes associated with high prevalence, but low mortality. Thus, we hypothesized that, in addition to P. marinus, Perkinsus species with little or no pathogenicity for C. virginica may be present. Accordingly, we investigated the distribution of Perkinsus species in C. virginica and Mercenaria mercenaria, collected from Maine to Virginia, by applying PCR-based assays specific for P. marinus, P. andrewsi, and a Perkinsus sp. isolated from M. mercenaria. DNA samples of M. mercenaria possessed potent PCR inhibitory activity, which was overcome by the addition of 1 mg/ml BSA and 5% (v/v) DMSO to the PCR reaction mixture. All 3 Perkinsus species were found in both host species throughout the study area. Interestingly, the prevalence of P. marinus in M. mercenaria was significantly lower than in C. virginica, suggesting that M. mercenaria is not an optimal host for P. marinus.  相似文献   

19.
Serine protease inhibitors (SPIs) are a superfamily of structurally related but functionally diverse proteins found in almost all organisms ranging from viruses to humans. Some of them play important roles in host defense. A recently identified SPI from the eastern oyster (Crassostrea virginica), cvSI-1, has been shown to inhibit the proliferation of the Dermo pathogen Perkinsus marinus in vitro, although direct evidence linking it to disease resistance is lacking. In this study, we identified polymorphism in the cvSI-1 gene and studied its association with improved survival after disease-caused mortalities and in disease-resistant eastern oyster strains. Full-cDNA sequence of cvSI-1 was sequenced in a diverse panel of oysters, revealing 12 single-nucleotide polymorphisms (SNPs) in the 273 bp coding region: five were synonymous and seven non-synonymous. The Dn/Ds ratio, 1.4, suggests that cvSI-1 is under positive selection. Selected SNPs were genotyped in families before and after disease-caused mortalities as well as in disease-resistant and susceptible strains. At SNP198, the C allele consistently increased in frequency after mortalities that are caused primarily by Dermo and possibly also by MSX. Its frequency in the disease-resistant strain is significantly higher than that in the susceptible strains and the base population from which the selected strains were derived. These results indicate that polymorphism at cvSI-1 is associated with Dermo (possibly also MSX) resistance in the eastern oyster. SNP198 is a synonymous mutation, and its association with disease resistance may be due to its close linkage to a functional polymorphism nearby.  相似文献   

20.
A novel lysozyme cDNA from the Pacific oyster, Crassostrea gigas, was identified. This second lysozyme from the Pacific oyster was designated as CGL-2. The complete CGL-2 cDNA sequence comprises of 536 bp, and 429 bp of the open reading frame encodes 147 bp of amino acid residues. Estimated CGL-2 molecular characteristics (isoelectric point and numbers of peptide recognition sites) resembled those of cv-lysozyme 2, a digestive lysozyme of the eastern oyster, Crassostrea virginica. Moreover, CGL-2 is phylogenetically homologous to the cv-lysozyme 2, indicating that CGL-2 and cv-lysozyme 2 evolved from the same ancestor protein for adaptation to the digestive environment. In situ hybridization revealed that the CGL-2 gene is expressed in digestive cells. It is noteworthy that the other Pacific oyster lysozyme, CGL-1, was also transcribed in the same cells. Presence and expression of multiple lysozymes in the digestive diverticula suggest that CGL-1 and CGL-2 might play complementary roles in digestive organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号