首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium channels are a diverse family of integral membrane proteins through which K+ can pass selectively. There is ongoing debate about the nature of conformational changes associated with the opening/closing and conductive/nonconductive states of potassium channels. The channels partly exert their function by varying their conductance through a mechanism known as C-type inactivation. Shortly after the activation of K+ channels, their selectivity filter stops conducting ions at a rate that depends on various stimuli. The molecular mechanism of C-type inactivation has not been fully understood yet. However, the X-ray structure of the KcsA channel obtained in the presence of low K+ concentration is thought to be representative of a K+ channel in the C-type inactivated state. Here, extensive, fully atomistic molecular dynamics and free-energy simulations of the low-K+ KcsA structure in an explicit lipid bilayer are performed to evaluate the stability of this structure and the selectivity of its binding sites. We find that the low-K+ KcsA structure is stable on the timescale of the molecular dynamics simulations performed, and that ions preferably remain in S1 and S4. In the absence of ions, the selectivity filter evolves toward an asymmetric architecture, as already observed in other computations of the high-K+ structure of KcsA and KirBac. The low-K+ KcsA structure is not permeable by Na+, K+, or Rb+, and the selectivity of its binding sites is different from that of the high-K+ structure.  相似文献   

2.
The recently reported crystal structures of the membrane-embedded proton-dependent c-ring rotors of a cyanobacterial F1Fo ATP synthase and a chloroplast F1Fo ATP synthase have provided new insights into the mechanism of this essential enzyme. While the overall features of these c-rings are similar, a discrepancy in the structure and hydrogen-bonding interaction network of the H+ sites suggests two distinct binding modes, potentially reflecting a mechanistic differentiation. Importantly, the conformation of the key glutamate side chain to which the proton binds is also altered. To investigate the nature of these differences, we use molecular dynamics simulations of both c-rings embedded in a phospholipid membrane. We observe that the structure of the c15 ring from Spirulina platensis is unequivocally stable within the simulation time. By contrast, the proposed structure of the H+ site in the chloroplast c14 ring changes rapidly and consistently into that reported for the c15 ring, indicating that the latter represents a common binding mode. To assess this hypothesis, we have remodeled the c14 ring by molecular replacement using the published structure factors. The resulting structure provides clear evidence in support of a common binding site conformation and is also considerably improved statistically. These findings, taken together with a sequence analysis of c-subunits in the ATP synthase family, indicate that the so-called proton-locked conformation observed in the c15 ring may be a common characteristic not only of light-driven systems such as chloroplasts and cyanobacteria but also of a selection of other bacterial species.  相似文献   

3.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

4.
5.
Atomic positions obtained by X-ray crystallography are time and space averages over many molecules in the crystal. Importantly, interatomic distances, calculated between such average positions and frequently used in structural and mechanistic analyses, can be substantially different from the more appropriate time-average and ensemble-average interatomic distances. Using crystallographic B-factors, one can deduce corrections, which have so far been applied exclusively to small molecules, to obtain correct average distances as a function of the type of atomic motion. Here, using 4774 high-quality protein X-ray structures, we study the significance of such corrections for different types of atomic motion. Importantly, we show that for distances shorter than 5 Å, corrections greater than 0.5 Å may apply, especially for noncorrelated or anticorrelated motion. For example, 14% of the studied structures have at least one pair of atoms with a correction of ≥ 0.5 Å in the case of noncorrelated motion. Using molecular dynamics simulations of villin headpiece, ubiquitin, and SH3 domain unit cells, we demonstrate that the majority of average interatomic distances in these proteins agree with noncorrelated corrections, suggesting that such deviations may be truly relevant. Importantly, we demonstrate that the corrections do not significantly affect stereochemistry and the overall quality of final refined X-ray structures, but can provide marked improvements in starting unrefined models obtained from low-resolution X-ray data. Finally, we illustrate the potential mechanistic and biological significance of the calculated corrections for KcsA ion channel and show that they provide indirect evidence that motions in its selectivity filter are highly correlated.  相似文献   

6.
A double lipid bilayer structure containing opposing tetramers of AQP0 aquaporin, in contact through extracellular face loop regions, was recently modeled using an intermediate-resolution map obtained by electron crystallographic methods. The pores of these water channels were found to be critically narrow in three regions and subsequently interpreted to be those of a closed state of the channel. The subsequent determination of a high-resolution AQP0 tetramer structure by X-ray crystallographic methods yielded a pore model featuring two of the three constrictions as noted in the EM work and water molecules within the channel pore. The extracellular-side constriction region of this AQP0 structure was significantly larger than that of the EM-based model and similar to that of the highly water permeable AQP1. The X-ray-based study of AQP0 however could not ascertain if the water molecules found in the pore were the result of water entering from one or both ends of the channel, nor whether water could freely pass through all constriction points. Additionally, this X-ray-based structure could not provide an answer to the question of whether the double lipid bilayer configuration of AQP0 could functionally maintain a water impermeable state of the channel. To address these questions we conducted molecular dynamics simulations to compare the time-dependent behavior of the AQP0 and AQP1 channels within lipid bilayers. The simulations demonstrate that AQP0, in single or double lipid bilayers, is not closed to water transport and that thermal motions of critical side-chains are sufficient to facilitate the movement of water past any of its constriction regions. These motional requirements do however lead to significant free energy barriers and help explain physiological observations that found water permeability in AQP0 to be substantially lower than in the AQP1 pore.  相似文献   

7.
RNA secondary structures can be divided into helical regions composed of canonical Watson-Crick and related base pairs, as well as single-stranded regions such as hairpin loops, internal loops, and junctions. These elements function as building blocks in the design of diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze existing RNA four-way junctions in terms of base-pair interactions and 3D configurations. Specifically, we identify nine broad junction families according to coaxial stacking patterns and helical configurations. We find that helices within junctions tend to arrange in roughly parallel and perpendicular patterns and stabilize their conformations using common tertiary motifs such as coaxial stacking, loop-helix interaction, and helix packing interaction. Our analysis also reveals a number of highly conserved base-pair interaction patterns and novel tertiary motifs such as A-minor-coaxial stacking combinations and sarcin/ricin motif variants. Such analyses of RNA building blocks can ultimately help in the difficult task of RNA 3D structure prediction.  相似文献   

8.
Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis.  相似文献   

9.
The cellulosome is a highly elaborate cell-bound multienzyme complex that efficiently orchestrates the deconstruction of cellulose and hemicellulose, two of the nature's most abundant polymers. Understanding the intricacy of these nanomachines evolved by anaerobic microbes could sustain the development of an effective process for the conversion of lignocellulosic biomass to bio-ethanol. In Clostridium thermocellum, cellulosome assembly is mediated by high-affinity protein:protein interactions (> 109 M− 1) between dockerin modules found in the catalytic subunits and cohesin modules located in a non-catalytic protein scaffold termed CipA. Whereas the atomic structures of several cellulosomal components have been elucidated, the structural organization of the complete cellulosome remains elusive. Here, we reveal that a large fragment of the cellulosome presents a mostly compact conformation in solution, by solving the three-dimensional structure of a C. thermocellum mini-cellulosome comprising three consecutive cohesin modules, each bound to one Cel8A cellulase, at 35 Å resolution by cryo-electron microscopy. Interestingly, the three cellulosomal catalytic domains are found alternately projected outward from the CipA scaffold in opposite directions, in an arrangement that could expand the area of the substrate accessible to the catalytic domains. In addition, the cellulosome can transit from this compact conformation to a multitude of diverse and flexible structures, where the linkers between cohesin modules are extended and flexible. Thus, structural transitions controlled by changes in the degree of flexibility of linkers connecting consecutive cohesin modules could regulate the efficiency of substrate recognition and hydrolysis.  相似文献   

10.
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn2 +, respectively. We examined the effect of Mn2 +, Co2 + and Zn2 + because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn2 + (or Co2 +) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn2 +, the sugar puckering of the primer strand 3′ terminus changes from C2′-endo to C3′-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.  相似文献   

11.
Activation and inactivation of voltage-gated sodium channels (Navs) are well studied, yet the molecular mechanisms governing channel gating in the membrane remain unknown. We present two conformations of a Nav from Caldalkalibacillus thermarum reconstituted into lipid bilayers in one crystal at 9 Å resolution based on electron crystallography. Despite a voltage sensor arrangement identical with that in the activated form, we observed two distinct pore domain structures: a prominent form with a relatively open inner gate and a closed inner-gate conformation similar to the first prokaryotic Nav structure. Structural differences, together with mutational and electrophysiological analyses, indicated that widening of the inner gate was dependent on interactions among the S4–S5 linker, the N-terminal part of S5 and its adjoining part in S6, and on interhelical repulsion by a negatively charged C-terminal region subsequent to S6. Our findings suggest that these specific interactions result in two conformational structures.  相似文献   

12.
Cofilin is a key actin-binding protein that is critical for controlling the assembly of actin within the cell. Here, we present the results of molecular docking and dynamics studies using a muscle actin filament and human cofilin I. Guided by extensive mutagenesis results and other biophysical and structural studies, we arrive at a model for cofilin bound to the actin filament. This predicted structure agrees very well with electron microscopy results for cofilin-decorated filaments, provides molecular insight into how the known F- and G-actin sites on cofilin interact with the filament, and also suggests new interaction sites that may play a role in cofilin binding. The resulting atomic-scale model also helps us understand the molecular function and regulation of cofilin and provides testable data for future experimental and simulation work.  相似文献   

13.
NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H and Na. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na and Li at pH above 7 and involves a 7-Å displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.  相似文献   

14.
NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H+ and Na+. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na+ and Li+ at pH above 7 and involves a 7-Å displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.  相似文献   

15.
Recognition of the human immunodeficiency virus Rev-responsive element (RRE) RNA by the Rev protein is an essential step in the viral life cycle. Formation of the Rev-RRE complex signals nucleocytoplasmic export of unspliced and partially spliced viral RNA. Essential components of the complex have been localized to a minimal arginine-rich Rev peptide and stem IIB of RRE. In vitro selection studies have identified a synthetic peptide known as RSG 1.2 that binds with better specificity and affinity to RRE than the Rev peptide. NMR structures of both peptide-RNA complexes of Rev and RSG 1.2 bound to RRE stem IIB have been solved and reveal gross structural differences between the two bound complexes. Molecular dynamics simulations of the Rev and RSG 1.2 peptides in complex with RRE stem IIB have been simulated to better understand on an atomic level how two arginine-rich peptides of similar length recognize the same sequence of RNA with such different structural motifs. While the Rev peptide employs some base-specific hydrogen bonding for recognition of RRE, shape recognition, through contact with the sugar-phosphate backbone, and cation-pi interactions are also important. Molecular dynamics simulations suggest that RSG 1.2 binds more tightly to the RRE sequence than Rev by forming more base-specific contacts, using water to mediate peptide-RNA contacts, and is held in place by a strong salt bridge network spanning the major groove of the RNA.  相似文献   

16.
Recent investigations have highlighted a key role of the proteins of the KCTD (K-potassium channel tetramerization domain containing proteins) family in several fundamental biological processes. Despite the growing importance of KCTDs, our current understanding of their biophysical and structural properties is very limited. Biochemical characterizations of these proteins have shown that most of them act as substrate adaptor in E3 ligases during protein ubiquitination. Here we present a characterization of the KCTD5-Cullin3 interactions which are mediated by the KCTD5 BTB domain. Isothermal titration calorimetry experiments reveal that KCTD5 avidly binds the Cullin3 (Cul3). The complex presents a 5:5 stoichiometry and a dissociation constant of 59 nM. Molecular modeling and molecular dynamics simulations clearly indicate that the two proteins form a stable (KCTD5–Cul3)5 pinwheel-shaped heterodecamer in which two distinct KCTD5 subunits cooperate in the binding of each cullin chain. Molecular dynamics simulations indicate that different types of interactions contribute to the stability of the assembly. Interestingly, residues involved in Cul3 recognitions are conserved in the KCTD5 orthologs and paralogs implicated in important biological processes. These residues are also rather well preserved in most of the other KCTD proteins. By using molecular modeling techniques, the entire ubiquitination system including the E3 ligase, the E2 conjugating enzyme and ubiquitin was generated. The analysis of the molecular architecture of this complex machinery provides insights into the ubiquitination processes which involve E3 ligases with a high structural complexity.  相似文献   

17.
Maisuradze GG  Leitner DM 《Proteins》2007,67(3):569-578
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure.  相似文献   

18.
Conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid-state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct conformations of the selectivity filter; significant changes are observed in the chemical shifts of key residues in the filter as the potassium ion concentration is changed from 50 mM to 1 μM. Potassium ion titration studies reveal that the site-specific Kd for K+ binding at the key pore residue Val76 is on the order of ∼ 7 μM and that a relatively high sample hydration is necessary to observe the low-K+ conformer. Simultaneous detection of both conformers at low ambient potassium concentration suggests that the high-K+ and low-K+ states are in slow exchange on the NMR timescale (kex < 500 s− 1). The slow rate and tight binding for evacuating both inner sites simultaneously differ from prior observations in detergent in solution, but agree well with measurements by electrophysiology and appear to result from our use of a hydrated bilayer environment. These observations strongly support a common assumption that the low-K+ state is not involved in ion transmission, and that during transmission one of the two inner sites is always occupied. On the other hand, these kinetic and thermodynamic characteristics of the evacuation of the inner sites certainly could be compatible with participation in a control mechanism at low ion concentration such as C-type inactivation, a process that is coupled to activation and involves closing of the outer mouth of the channel.  相似文献   

19.
The Na+-coupled symporter BetP catalyzes the uptake of the compatible solute betaine in the soil bacterium Corynebacterium glutamicum. BetP also senses hyperosmotic stress and regulates its own activity in response to stress level. We determined a three-dimensional (3D) map (at 8 Å in-plane resolution) of a constitutively active mutant of BetP in a C. glutamicum membrane environment by electron cryomicroscopy of two-dimensional crystals. The map shows that the constitutively active mutant, which lacks the C-terminal domain involved in osmosensing, is trimeric like wild-type BetP. Recently, we reported the X-ray crystal structure of BetP at 3.35 Å, in which all three protomers displayed a substrate-occluded state. Rigid-body fitting of this trimeric structure to the 3D map identified the periplasmic and cytoplasmic sides of the membrane. Fitting of an X-ray monomer to the individual protomer maps allowed assignment of transmembrane helices and of the substrate pathway, and revealed differences in trimer architecture from the X-ray structure in the tilt angle of each protomer with respect to the membrane. The three protomer maps showed pronounced differences around the substrate pathway, suggesting three different conformations within the same trimer. Two of those protomer maps closely match those of the atomic structures of the outward-facing and inward-facing states of the hydantoin transporter Mhp1, suggesting that the BetP protomer conformations reflect key states of the transport cycle. Thus, the asymmetry in the two-dimensional maps may reflect cooperativity of conformational changes within the BetP trimer, which potentially increases the rate of glycine betaine uptake.  相似文献   

20.
Inference of macromolecular assemblies from crystalline state   总被引:24,自引:0,他引:24  
We discuss basic physical-chemical principles underlying the formation of stable macromolecular complexes, which in many cases are likely to be the biological units performing a certain physiological function. We also consider available theoretical approaches to the calculation of macromolecular affinity and entropy of complexation. The latter is shown to play an important role and make a major effect on complex size and symmetry. We develop a new method, based on chemical thermodynamics, for automatic detection of macromolecular assemblies in the Protein Data Bank (PDB) entries that are the results of X-ray diffraction experiments. As found, biological units may be recovered at 80-90% success rate, which makes X-ray crystallography an important source of experimental data on macromolecular complexes and protein-protein interactions. The method is implemented as a public WWW service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号