首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The double-stranded RNA (dsRNA)-activated protein kinase [protein kinase R (PKR)] plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15-bp dsRNA for one protein to bind and 30-bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eukaryotic initiation factor 2α, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15- to 30-bp limits: human immunodeficiency virus type 1 transactivation-responsive region (TAR) RNA, a 23-bp hairpin with three bulges that is known to dimerize. TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization to test whether RNA dimerization affects PKR dimerization and activation. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary-structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary-structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15- to 30-bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease.  相似文献   

3.
The dsRNA-dependent protein kinase (PKR) is a key mediator of the anti-viral and anti-proliferative effects of interferon. Unphosphorylated PKR is characterized by inhibitory interactions between the kinase and RNA binding domains (RBDs), but the structural details of the latent state and its unraveling during activation are not well understood. To study PKR regulation by NMR we assigned a large portion of the backbone resonances of the catalytically inactive K296R kinase domain, and performed (15)N-heteronuclear single quantum coherence (HSQC) titrations of this kinase domain with the RBDs. Chemical shift perturbations in the kinase indicate that RBD2 binds to the substrate eIF2alpha docking site in the kinase C-lobe. Consistent with these results, a mutation in the eIF2alpha docking site, F495A, displays weaker interactions with the RBD. The full-length RBD1+2 binds more strongly to the kinase domain than RBD2 alone. The observed chemical shift changes extend from the eIF2alpha binding site into the kinase N-lobe and inside the active site, consistent with weak interactions between the N-terminal part of the RBD and the kinase.  相似文献   

4.
The interferon-inducible protein kinase PKR interacts with a number of small viral RNA species, including adenovirus VAI RNA and the Epstein-Barr virus-encoded RNA EBER-1. These RNAs bind to PKR and protect protein synthesis from inhibition by double-stranded RNA in the reticulocyte lysate system. Using a peptide phosphorylation assay we show here that EBER-1, like VAI, directly inhibits the activation of purified PKR. A second Epstein-Barr virus RNA, EBER-2, also regulates PKR. EBER-1, EBER-2 and VAI RNA exhibit mutually competitive binding to the native or recombinant enzyme, as assessed by U.V. crosslinking experiments and filter binding assays. The affinities of all three RNAs for PKR in vitro are similar (Kd = ca. 0.3 nM). Since this protein kinase has been proposed to exert a tumour suppressor function in vivo, the ability of EBER-1 to inhibit its activation suggests a role for this small RNA in cell transformation by Epstein-Barr virus.  相似文献   

5.
Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of this domain in complex with adenine revealed an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base-pairing interactions and identified five binding sites for hexahydrated Mg2+-ions. Furthermore, a role for Mg2+-ions in the ligand-induced folding of this RNA was suggested. Here, we describe the interaction of divalent cations with the RNA–adenine complex in solution as studied by high-resolution NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping and intermolecular nuclear Overhauser effects (NOEs) indicate the presence of at least three binding sites for divalent cations. Two of them are similar to those in the X-ray structure. The third site, which is important for the folding of this RNA, has not been observed previously. The ligand-free state of the RNA is conformationally heterogeneous and contains base-pairing patterns detrimental to ligand binding in the absence of Mg2+, but becomes partially pre-organized for ligand binding in the presence of Mg2+. Compared to the highly similar guanine-sensing riboswitch, the folding pathway for the adenine-sensing riboswitch aptamer domain is more complex and the influence of Mg2+ is more pronounced.  相似文献   

6.
7.
RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP–l-histidine–Mg2+) and EDTA (0.5 M) treated ternary complex (HutP–l-histidine–Mg2+), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.  相似文献   

8.
9.
Adenoviruses use the virus-encoded virus-associated RNA (VAI RNA) as a defense against cellular antiviral response by blocking the activation of the interferon-induced, double-stranded RNA-activated protein kinase PKR. The structure of VAI RNA consists of two long, imperfectly base-paired duplex regions connected by a complex short stem-loop at the center, referred to as the central domain. By using a series of adenovirus mutants with linker-scan mutations in the VAI RNA gene, we recently showed that the critical elements required for function in the VAI RNA molecule are in the central domain and that these same elements of the central domain are also involved in binding to PKR. In virus-infected cells, VAI RNA interacts with latent kinase, which is bound to ribosomes; this interaction takes place in a complex milieu. To more fully understand the relationship between structure and function and to determine whether the in vivo phenotype of these mutants can be reproduced in vitro, we have now analyzed these mutant VAI alleles for their ability to block the activation of a partially purified PKR from HeLa cells. We have also derived the structure of these mutants experimentally and correlated the structure with function. Without exception, when the structure of the short stem-loop of the central domain was perturbed, the mutants failed to inhibit PKR. Structural disruptions elsewhere in the central domain or in the long duplex regions of the molecule were not deleterious for in vitro function. Thus, these results support our previous findings and underscore the importance of the elements present in the central domain of the VAI RNA for its function. Our results also suggest that the interaction between PKR and VAI RNA involves a precise secondary (and tertiary) structure in the central domain. It has been suggested that VAI RNA does not activate PKR in virus-infected cells because of mismatches in the imperfectly base-paired long duplex regions. We constructed mutant VAI genes in which the imperfectly base-paired duplex regions were converted to perfectly base-paired regions and assayed in vitro for the activation of PKR. As with the wild-type VAI RNA, these mutants failed to activate PKR in vitro, while they were able to block the activation of PKR better than did the wild type. These results suggest that the failure of VAI RNA to activate PKR is not the result of mismatches in the long duplex regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Riboswitches are functional mRNA that control gene expression. Thiamine pyrophosphate (TPP) binds to thi-box riboswitch RNA and allosterically inhibits genes that code for proteins involved in the biosynthesis and transport of thiamine. Thiamine binding to the pyrimidine sensor helix and pyrophosphate binding to the pyrophosphate sensor helix cause changes in RNA conformation that regulate gene expression. Here we examine the thermodynamic properties of the internal loop of the pyrophosphate binding domain by comparing the wild-type construct (RNA WT) with six modified 2 × 2 bulged RNA and one 2 × 2 bulged DNA. The wild-type construct retains five conserved bases of the pyrophosphate sensor domain, two of which are in the 2 × 2 bulge (C65 and G66). The RNA WT construct was among the most stable (ΔG°37 = −7.7 kcal/mol) in 1 M KCl at pH 7.5. Breaking the A•G mismatch of the bulge decreases the stability of the construct ∼0.5–1 kcal/mol, but does not affect magnesium binding to the RNA WT. Guanine at position 48 is important for RNA–Mg2+ interactions of the TPP-binding riboswitch at pH 7.5. In the presence of 9.5 mM magnesium at pH 5.5, the bulged RNA constructs gained an average of 1.1 kcal/mol relative to 1 M salt. Formation of a single A+•C mismatch base pair contributes about 0.5 kcal/mol at pH 5.5, whereas two tandem A+•C mismatch base pairs together contribute about 2 kcal/mol.  相似文献   

11.
12.
13.
Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway. PKR is activated to undergo autophosphorylation upon binding to double-stranded RNAs or RNAs that contain duplex regions. Activated PKR phosphorylates the α subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis. PKR is also activated by heparin, a highly sulfated glycosaminoglycan. We have used biophysical methods to define the mechanism of PKR activation by heparin. Heparins as short as hexasaccharide bind strongly to PKR and activate autophosphorylation. In contrast to double-stranded RNA, heparin activates PKR by binding to the kinase domain. Analytical ultracentrifugation measurements support a thermodynamic linkage model where heparin binding allosterically enhances PKR dimerization, thereby activating the kinase. These results indicate that PKR can be activated by small molecules and represents a viable target for the development of novel antiviral agents.  相似文献   

14.
The phosphorylation of phosvitin in vitro by a cyclic nucleotide-independent protein kinase (phosvitin kinase) derived from rooster liver is markedly stimulated by the divalent cation, Mg2+. In addition, the activity is further stimulated by low concentrations of the polyamines putrescine, spermidine and spermine leading to higher rates of phosphate incorporation than could be obtained at any concentration of Mg2+. Spermine is inhibitory at higher concentrations. The polyamines shift the Mg2+ requirement for maximal activity to lower concentrations. The activity of a cyclic AMP-dependent histone kinase from beef heart is not altered by the presence of polyamines. Heparin is a potent inhibitor of phosvitin kinase but has no effect on histone kinase. Polyribonucleotides (polyadenylic acid and transfer RNA) inhibit both types of kinases, but the degree of inhibition of phosvitin kinase is variable and depends upon the type of the polyanion present. Spermidine and spermine, but not Mg2+, efficiently counteract the inhibitory action of heparin and tRNA. The results suggest that, also in vivo, naturally occurring polyamines and polyanions such ass tRNA may have a regulatory function on protein kinases.  相似文献   

15.
Interferon (IFN)-inducible, double-stranded (dsRNA)-activated protein kinase (PKR) is a key mediator of the antiviral and antiproliferative effects of IFN. PKR is present within cells in a latent state. In response to binding dsRNA, the enzyme becomes activated, causing autophosphorylation and an increase in specific kinase activity. In order to study PKR and its inhibitors, a large amount of the enzyme in its latent, unphosphorylated state is required. When PKR is fused to glutathione S-transferase (GST-PKR) and the fusion protein is expressed in Escherichia coli, the PKR obtained is fully activated by autophosphorylation. Therefore, we have developed an expression plasmid in which both GST-PKR and bacteriophage lambda protein phosphatase (lambda-PPase) genes were placed downstream of a T7 promoter. After induction of expression, unphosphorylated GST-PKR was obtained in good yield, and purified to near homogeneity. The purified enzyme has dsRNA-dependent activation and phosphorylates the translation initiation factor eIF2 alpha. Using the recombinant protein, we analyzed the inhibition mechanisms of two viral inhibitors, vaccinia virus K3L protein and adenovirus virus-associated RNA I (VAI RNA). K3L inhibited both autophosphorylation of PKR and phosphorylation of eIF2 alpha, whereas VAI RNA inhibited only autophosphorylation. The separation of autophosphorylation and catalytic activity shows that the recombinant PKR is useful in analyzing the functions of PKR, its inhibitors, and its regulatory molecules. The coexpression system of protein kinase with lambda-PPase described here will be applicable to obtaining unphosphorylated and unactivated forms of other protein kinases.  相似文献   

16.
Adenoviruses use virus-associated RNA I (VAI RNA) to counteract the cellular antiviral response mediated by the interferon-induced, double-stranded-RNA-activated protein kinase PKR. VAI RNA is a highly structured small RNA which consists of two long duplex regions connected at the center by a complex, short stem-loop. This short stem-loop and the adjacent base-paired regions, referred to as the central domain, bind to PKR and inactivate it. Currently it is not known whether binding of VAI RNA to PKR is dependent solely on the secondary (and tertiary) structure of the central domain or whether nucleotide sequences in the central domain are also critical for this interaction. To address this question, 54 VAI mutants with single-base substitution mutations in the central domain of the RNA were constructed, and their capacities to inhibit the autophosphoryation of PKR in vitro were determined. It was found that although about half of the mutants inhibited PKR activity as efficiently as the wild type, a significant number of mutants lost the inhibitory activity substantially, without a perceptible change in their secondary structures. These results indicate that, in addition to secondary structure, at least some nucleotides in the central domain may be critical for the efficient function of VAI RNA.  相似文献   

17.
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.  相似文献   

18.
Amino acid effector binding to rabbit muscle pyruvate kinase   总被引:1,自引:0,他引:1  
l-Phenylalanine, an allosteric inhibitor of rabbit muscle pyruvate kinase, is shown to bind to the tetrameric enzyme in a ratio of 4 moles effector per mole of tetramer. This binding is slightly cooperative in the absence of divalent cation activators, but the cooperativity is strongly increased when measured in the presence of 2.5 mm Mg2+ or Mn2+. The effector affinity is somewhat decreased under these conditions. l-Alanine was known to antagonize all measured phenylalanine effects and is shown here to also bind to 4 sites on the protein. The binding is noncooperative and little affected by the presence of the divalent activating cations. Competition experiments with phenylalanine and alanine suggest competition for the same site. Substrate kinetic measurements at P-enolpyruvate and Mg2+ concentrations under 100 μm show considerable inhibition of the enzyme at phenylalanine concentrations around 100 μm, near the serum levels of the free amino acid. The approach to the phenylalanine-inhibited velocity occurs with half-times less than 1 sec.  相似文献   

19.
RNA polymerase has been solubilized from sugar beet chromatin. With calf thmus or sugar beet DNA as template enzyme activity was linear with respect to protein concentration and required the presence of all four nucleoside triphospahates, added DNA and divalent metal ions. The enzyme exhibited a sharp Mn2+ optimum of 1·25 mM and a Mg2+ optimum at 10mM. The Mn2+/Mg2+ activity ratio (activity at optimum concentrations) was 2·0 with an optimum salt concentration of 50 mM. Based on data including inhibition with α-amanitin (0·025 μg/ml), the majority of the total activity appeared to be RNA polymerase I. Subsequent fractionation by DEAE-Sephadex column chromatography resulted in one peak of activity eluted with 0·18 M (NH4)2SO4.  相似文献   

20.
We have recently shown that nc886 (pre-miR-886 or vtRNA2-1) is not a genuine microRNA precursor nor a vault RNA, but a novel type of non-coding RNA that represses PKR, a double-stranded RNA (dsRNA) dependent kinase. Here we have characterized their direct physical association. PKR’s two RNA binding domains form a specific and stable complex with nc886’s central portion, without any preference to its 5′-end structure. By binding to PKR with a comparable affinity, nc886 competes with dsRNA and attenuates PKR activation by dsRNA. Our data suggest that nc886 sets a threshold for PKR activation so that it occurs only during genuine viral infection but not by a minute level of fortuitous cellular dsRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号