首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min− 1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~ 1 min− 1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the “choice” is enforced by energy barriers that grow larger as folding progresses.  相似文献   

2.
Like many structured RNAs, the Tetrahymena group I ribozyme is prone to misfolding. Here we probe a long-lived misfolded species, referred to as M, and uncover paradoxical aspects of its structure and folding. Previous work indicated that a non-native local secondary structure, termed alt P3, led to formation of M during folding in vitro. Surprisingly, hydroxyl radical footprinting, fluorescence measurements with site-specifically incorporated 2-aminopurine, and functional assays indicate that the native P3, not alt P3, is present in the M state. The paradoxical behavior of alt P3 presumably arises because alt P3 biases folding toward M, but, after commitment to this folding pathway and before formation of M, alt P3 is replaced by P3. Further, structural and functional probes demonstrate that the misfolded ribozyme contains extensive native structure, with only local differences between the two states, and the misfolded structure even possesses partial catalytic activity. Despite the similarity of these structures, re-folding of M to the native state is very slow and is strongly accelerated by urea, Na+, and increased temperature and strongly impeded by Mg2+ and the presence of native peripheral contacts. The paradoxical observations of extensive native structure within the misfolded species but slow conversion of this species to the native state are readily reconciled by a model in which the misfolded state is a topological isomer of the native state, and computational results support the feasibility of this model. We speculate that the complex topology of RNA secondary structures and the inherent rigidity of RNA helices render kinetic traps due to topological isomers considerably more common for RNA than for proteins.  相似文献   

3.
Molecular beacons as probes of RNA unfolding under native conditions   总被引:4,自引:0,他引:4  
Hybridization of fluorescent molecular beacons provides real-time detection of RNA secondary structure with high specificity. We used molecular beacons to measure folding and unfolding rates of the Tetrahymena group I ribozyme under native conditions. A molecular beacon targeted against 15 nt in the 5′ strand of the P3 helix specifically hybridized with misfolded forms of the ribozyme, without invading the native tertiary structure. The beacon associated with the misfolded ribozyme 300 times more slowly than with an unstructured oligonucleotide containing the same target sequence, suggesting that the misfolded ribozyme core remains structured in the absence of Mg2+. The rate of beacon hybridization under native conditions revealed a linear relationship between the free energy of unfolding and Mg2+ concentration. A small fraction of the RNA population unfolded very rapidly, suggesting parallel unfolding in one step or through misfolded intermediates.  相似文献   

4.
The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing the functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally similar misfolded conformation that has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (EΔP5abc). Here, we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of EΔP5abc toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, similar to P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by dimethyl sulfate footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structural features, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native contacts as they form. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in RNA folding kinetics.  相似文献   

5.
Cao S  Chen SJ 《RNA (New York, N.Y.)》2005,11(12):1884-1897
Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop-helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule.  相似文献   

6.
The folding pathway of the histone H2A-H2B heterodimer minimally includes an on-pathway, dimeric, burst-phase intermediate, I2. The partially folded H2A and H2B monomers populated at equilibrium were characterized as potential monomeric kinetic intermediates. Folding kinetics were compared for initiation from isolated, folded monomers and the heterodimer unfolded in 4 M urea. The observed rates were virtually identical above 0.4 M urea, exhibiting a log-linear relationship on the final denaturant concentration. Below ∼ 0.4 M urea (concentrations inaccessible from the  4-M urea unfolded state), a rollover in the rates was observed; this suggests that a component of the I2 ensemble contains non-native structure that rearranges/isomerizes to a more native-like species. The contribution of helix propensity to the stability of the I2 ensemble was assessed with a set of H2A-H2B mutants containing Ala and Gly replacements at nine sites, focusing mainly on the long, central α2 helix. Equilibrium and kinetic folding/unfolding data were collected to determine the effects of the mutations on the stability of I2 and the transition state between I2 and N2. This limited mutational study indicated that residues in the α2 helices of H2A and H2B as well as α1 of H2B and both the C-terminus of α3 and the short αC helix of H2A contribute to the stability of the I2 burst-phase species. Interestingly, at least eight of the nine targeted residues stabilize I2 by interactions that are non-native to some extent. Given that destabilizing I2 and these non-native interactions does not accelerate folding, it is concluded that the native and non-native structures present in the I2 ensemble enable efficient folding of H2A-H2B.  相似文献   

7.
B Laggerbauer  F L Murphy    T R Cech 《The EMBO journal》1994,13(11):2669-2676
The L-21 Tetrahymena ribozyme, an RNA molecule with sequence-specific endoribonuclease activity derived from a self-splicing group I intron, provides a model system for studying the RNA folding problem. A 160 nucleotide, independently folding domain of tertiary structure (the P4-P6 domain) comprises about half of the ribozyme. We now apply Fe(II)-EDTA cleavage to mutants of the ribozyme to explore the role of individual structural elements in tertiary folding of the RNA at equilibrium. Deletion of peripheral elements near the 3' end of the ribozyme destabilizes a region of the catalytic core (P3-P7) without altering the folding of the P4-P6 domain. Three different mutations within the P4-P6 domain that destabilize its folding also shift the folding of the P3-P7 region of the catalytic core to higher MgCl2 concentrations. We conclude that the role of the extended P4-P6 domain and of the 3'-terminal peripheral elements is at least in part to stabilize the catalytic core. The organization of RNA into independently folding domains of tertiary structure may be common in large RNAs, including ribosomal RNAs. Furthermore, the observation of domain-domain interactions in a catalytic RNA supports the feasibility of a primitive spliceosome without any proteins.  相似文献   

8.
《Biophysical journal》2022,121(16):3010-3022
Determining the non-specific and specific electrostatic contributions of magnesium binding to RNA is a challenging problem. We introduce a single-molecule method based on measuring the folding energy of a native RNA in magnesium and at its equivalent sodium concentration. The latter is defined so that the folding energy in sodium equals the non-specific electrostatic contribution in magnesium. The sodium equivalent can be estimated according to the empirical 100/1 rule (1 M NaCl is equivalent to 10 mM MgCl2), which is a good approximation for most RNAs. The method is applied to an RNA three-way junction (3WJ) that contains specific Mg2+ binding sites and misfolds into a double hairpin structure without binding sites. We mechanically pull the RNA with optical tweezers and use fluctuation theorems to determine the folding energies of the native and misfolded structures in magnesium (10 mM MgCl2) and at the equivalent sodium condition (1 M NaCl). While the free energies of the misfolded structure are equal in magnesium and sodium, they are not for the native structure, the difference being due to the specific binding energy of magnesium to the 3WJ, which equals ΔG? 10 kcal/mol. Besides stabilizing the 3WJ, Mg2+ also kinetically rescues it from the misfolded structure over timescales of tens of seconds in a force-dependent manner. The method should generally be applicable to determine the specific binding energies of divalent cations to other tertiary RNAs.  相似文献   

9.
The time-course of monovalent cation-induced folding of the L-21 Sca1 Tetrahymena thermophila ribozyme and a selected mutant was quantitatively followed using synchrotron X-ray (.OH) footprinting. Initiating folding by increasing the concentration of either Na+ or K+ to 1.5M from an initial condition of approximately 0.008 M Na+ at 42 degrees C resulted in the complete formation of tertiary contacts within the P5abc subdomain and between the peripheral helices within the dead time of our measurements (k>50 s(-1)). These results contrast with folding rates of 2-0.2 s(-1) previously observed for formation of these contacts in 10mM Mg2+ from the same initial condition. Thus, the initial formation of native tertiary contacts is inhibited by divalent but not monovalent cations. The native contacts within the catalytic core form without a detectable burst phase at rates of 0.4-1.0 s(-1) in a manner reminiscent of the Mg2+-dependent folding behavior, although tenfold faster. The tertiary interactions stabilizing the catalytic core interaction with P4-P6 and P2.1, as well as one of the protections internal for the P4-P6 domain, display progress curves with appreciable burst amplitudes and a phase comparable in rate to that of the catalytic core. That the slow folding of the ribozyme's core is a consequence of the alt-P3 secondary structure is shown by the 100% burst phase amplitudes that are observed for folding of the U273A mutant ribozyme within which the native secondary structure (P3) is strengthened. Thus, formation of a misfolded intermediate(s) resulting from the alt-P3 secondary structure is independent of ion valency while the rate at which the respective intermediates are resolved is sensitive to ion valency. The overall portrait painted by these results is that ion valency differentially affects steps in the folding process and that folding in monovalent ion alone for the U273A mutant Tetrahymena ribozyme is fast and direct.  相似文献   

10.
《Journal of molecular biology》2019,431(19):3814-3826
To obtain proper insight into how structure develops during a protein folding reaction, it is necessary to understand the nature and mechanism of the polypeptide chain collapse reaction, which marks the initiation of folding. Here, the time-resolved fluorescence resonance energy transfer technique, in which the decay of the fluorescence light intensity with time is used to determine the time evolution of the distribution of intra-molecular distances, has been utilized to study the folding of the small protein, monellin. It is seen that when folding begins, about one-third of the protein molecules collapse into a molten globule state (IMG), from which they relax by continuous further contraction to transit to the native state. The larger fraction gets trapped into a metastable misfolded state. Exit from this metastable state occurs via collapse to the lower free energy IMG state. This exit is slow, on a time scale of seconds, because of activation energy barriers. The trapped misfolded molecules as well as the IMG molecules contract continuously and slowly as structure develops. A phenomenological model of Markovian evolution of the polymer chain undergoing folding, incorporating these features, has been developed, which fits well the experimentally observed time evolution of distance distributions. The observation that the “wrong turn” to the misfolded state has not been eliminated by evolution belies the common belief that the folding of functional protein sequences is very different from that of a random heteropolymer, and the former have been selected by evolution to fold quickly.  相似文献   

11.
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested rugged energy landscapes. Recently, single molecule fluorescence resonance energy transfer (smFRET) studies have exposed heterogeneity in many RNAs, consistent with deeply furrowed rugged landscapes. We turned to an RNA of intermediate complexity, the P4-P6 domain from the Tetrahymena group I intron, to address basic questions in RNA folding. P4-P6 exhibited long-lived heterogeneity in smFRET experiments, but the inability to observe exchange in the behavior of individual molecules led us to probe whether there was a non-conformational origin to this heterogeneity. We determined that routine protocols in RNA preparation and purification, including UV shadowing and heat annealing, cause covalent modifications that alter folding behavior. By taking measures to avoid these treatments and by purifying away damaged P4-P6 molecules, we obtained a population of P4-P6 that gave near-uniform behavior in single molecule studies. Thus, the folding landscape of P4-P6 lacks multiple deep furrows that would trap different P4-P6 molecules in different conformations and contrasts with the molecular heterogeneity that has been seen in many smFRET studies of structured RNAs. The simplicity of P4-P6 allowed us to reliably determine the thermodynamic and kinetic effects of metal ions on folding and to now begin to build more detailed models for RNA folding behavior.  相似文献   

12.
Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity   总被引:1,自引:0,他引:1  
Using a combined master equation and kinetic cluster approach, we investigate RNA pseudoknot folding and unfolding kinetics. The energetic parameters are computed from a recently developed Vfold model for RNA secondary structure and pseudoknot folding thermodynamics. The folding kinetics theory is based on the complete conformational ensemble, including all the native-like and non-native states. The predicted folding and unfolding pathways, activation barriers, Arrhenius plots, and rate-limiting steps lead to several findings. First, for the PK5 pseudoknot, a misfolded 5' hairpin emerges as a stable kinetic trap in the folding process, and the detrapping from this misfolded state is the rate-limiting step for the overall folding process. The calculated rate constant and activation barrier agree well with the experimental data. Second, as an application of the model, we investigate the kinetic folding pathways for human telomerase RNA (hTR) pseudoknot. The predicted folding and unfolding pathways not only support the proposed role of conformational switch between hairpin and pseudoknot in hTR activity, but also reveal molecular mechanism for the conformational switch. Furthermore, for an experimentally studied hTR mutation, whose hairpin intermediate is destabilized, the model predicts a long-lived transient hairpin structure, and the switch between the transient hairpin intermediate and the native pseudoknot may be responsible for the observed hTR activity. Such finding would help resolve the apparent contradiction between the observed hTR activity and the absence of a stable hairpin.  相似文献   

13.
Rao DK  Prabhu NP  Bhuyan AK 《Biochemistry》2006,45(27):8393-8401
This work describes an extensively misfolded kinetic intermediate in the folding of horse ferrocytochrome c. Under absolute native conditions, the alkali-unfolded protein liganded with carbon-monoxide exhibits misfolding. The misfolded product, apparently an off-pathway intermediate, requires large-scale unfolding in order to have a chance to fold correctly to the native state. The rate of unfolding of the misfolded intermediate limits the overall rate of protein folding. The high level of observed misfolding possibly results from a failure of the polypeptide chain to achieve by stochastic search the transition state relevant for successful folding. Such misfolding may be analogous to the failure of a sizable set of proteins in the intracellular milieu to fold to the functionally active native state.  相似文献   

14.
Wan Y  Russell R 《Biochemistry》2011,50(5):864-874
Structured RNAs encode native conformations that are more stable than the vast ensembles of alternative conformations, but how this specificity is evolved is incompletely understood. Here we show that a variant of the Tetrahymena group I intron ribozyme that was generated previously by in vitro selection for enhanced thermostability also displays modestly enhanced specificity against a stable misfolded structure that is globally similar to the native state, despite the absence of selective pressure to increase the energy gap between these structures. The enhanced specificity for native folding arises from mutations in two nucleotides that are close together in space in the native structure, and additional experiments show that these two mutations do not affect the stability of the misfolded conformation relative to the largely unstructured transition state ensemble for interconversion between the native and misfolded conformers. Thus, they selectively stabilize the native state, presumably by strengthening a local tertiary contact network that cannot form in the misfolded conformation. The stabilization is larger in the presence of the peripheral element P5abc, suggesting that cooperative tertiary structure formation plays a key role in the enhanced stability. The increased specificity in the absence of explicit selection suggests that the large energy gap in the wild-type RNA may have arisen analogously, a consequence of selective pressure for stability of the functional structure. More generally, the structural rigidity and intricate networks of contacts in structured RNAs may allow them to evolve substantial structural specificity without explicit negative selection, even against closely related alternative structures.  相似文献   

15.
Bas?e-pairing between the terminal loops of helices P2.1 and P9.1a (P13) and P2 and P5c (P14) stabilize the folded structure of the Tetrahymena group I intron. Using native gel electrophoresis to analyze the folding kinetics of a natural pre-RNA containing the Tetrahymena intron, we show that P13 and P14 are the only native loop-loop interactions among six possible combinations. Other base-pairing interactions of the loop sequences stabilize misfolded and inactive pre-RNAs. Mismatches in P13 or P14 raised the midpoints and decreased the cooperativity of the Mg(2+)-dependent eqXuilibrium folding transitions. Although some mutations in P13 resulted in slightly higher folding rates, others led to slower folding compared to the wild-type, suggesting that P13 promotes formation of P3 and P7. In contrast, mismatches in P14 increased the rate of folding, suggesting that base-pairing between P5c and P2 stabilizes intermediates in which the catalytic core is misfolded. Although the peripheral helices stabilize the native structure of the catalytic core, our results show that formation of long-range interactions, and competition between correct and incorrect loop-loop base-pairs, decrease the rate at which the active pre-RNA structure is assembled.  相似文献   

16.
The folding pathway of the Tetrahymena ribozyme correlates inversely with the sequence distance between native interactions, or contact order. The rapidly folding P4-P6 domain has a low contact order, while the slowly folding P3-P7 region has a high contact order. To examine the role of topology and contact order in RNA folding, we screened for circular permutants of the ribozyme that retain catalytic activity. Permutants beginning in the P4-P6 domain fold 5 to 20 times more slowly than the wild-type ribozyme. By contrast, 50% of a permuted RNA that disjoins a non-native interaction in P3 folds tenfold faster than the wild-type ribozyme. Hence, the probability of rapidly folding to the native state depends on the topology of tertiary domains.  相似文献   

17.
Predicting RNA pseudoknot folding thermodynamics   总被引:1,自引:1,他引:0       下载免费PDF全文
Cao S  Chen SJ 《Nucleic acids research》2006,34(9):2634-2652
Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease.  相似文献   

18.
Group I introns consist of two major structural domains, the P4-P6 and P3-P9 domains, which assemble through interactions with peripheral extensions to fold into an active ribozyme. To assess group I intron folding in vivo, we probed the structure of td wild-type and mutant introns using dimethyl sulfate. The results suggest that the majority of the intron population is in the native state in accordance with the current structural model, which was refined to include two novel tertiary contacts. The importance of the loop E motif in the P7.1-P7.2 extension in assisting ribozyme folding was deduced from modeling and mutational analyses. Destabilization of stem P6 results in a deficiency in tertiary structure formation in both major domains, while weakening of stem P7 only interferes with folding of the P3-P9 domain. The different impact of mutations on the tertiary structure suggests that they interfere with folding at different stages. These results provide a first insight into the structure of folding intermediates and suggest a putative order of events in a hierarchical folding pathway in vivo.  相似文献   

19.
Molecular chaperones are ATP‐consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all‐purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT‐19, which are ATP‐consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT‐19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL–GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild‐type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady‐state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.  相似文献   

20.
Phenylalanine hydroxylase (PAH), a non-heme iron enzyme, is responsible for the phenylalanine conversion to tyrosine. Its malfunction causes phenylketonuria (PKU). To better understand how protein structure and folding profiles are affected by the metal cofactor, we investigated the chemical (un)folding of apo- and holo-PAH from Chromobacterium violaceum (cPAH) using circular dichroism (CD) and analytical ultracentrifugation (AUC). Holo-cPAH shows a two-state unfolding transition. In contrast, the unfolding profile for apo-cPAH reveals a three-state (un)folding pathway and accumulation of an intermediate (apo-cPAHI). This intermediate is also observed in refolding experiments. Fluorescence studies are consistent with the CD findings. The intermediate apo-cPAHI and unfolded state(s) of apo- and holo-cPAHU have been characterized by analytical ultracentrifugation (AUC). At 2.4 and 2.8 M GuHCl, 90% of the signal for apo-cPAH has a weight average sedimentation coefficient in water at 20°C (s20,w) of about 48 S, representing multiple aggregate species made of multiple monomers of cPAH. Aggregate formation for apo-cPAH is also confirmed by dynamic light scattering and electron microscopy giving a hydrodynamic radius (RH) of 41 nm for apo-cPAHI versus 3.5 nm for the native protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号