首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Integrins are heterodimeric transmembrane (TM) receptors formed by noncovalent associations of α and β subunits. Each subunit contains a single α-helical TM domain. Inside-out activation of an integrin involves the separation of its cytoplasmic tails, leading to disruption of αβ TM packing. The leukocyte integrin αLβ2 is required for leukocyte adhesion, migration, proliferation, cytotoxic function, and antigen presentation. In this study, we show by mutagenesis experiments that the packing of αLβ2 TMs is consistent with that of the integrin αIIbβ3 TMs. However, molecular dynamics simulations of αLβ2 TMs in lipids predicted a polar interaction involving the side chains of αL Ser1071 and β2 Thr686 in the outer-membrane association clasp (OMC). This is supported by carbonyl vibrational shifts observed in isotope-labeled αLβ2 TM peptides that were incorporated into lipid bilayers. Molecular dynamics studies simulating the separation of αLβ2 tails showed the presence of polar interaction during the initial perturbation of the inner-membrane association clasp. When the TMs underwent further separation, the polar interaction was disrupted. OMC polar interaction is important in regulating the functions of β2 integrins because mutations that disrupt the OMC polar interaction generated constitutively activated αLβ2, αMβ2, and αXβ2 in 293T transfectants. We also show that the expression of mutant β2 Thr686Gly in β2-deficient T cells rescued cell adhesion to intercellular adhesion molecule 1, but the cells showed overt elongated morphologies in response to chemokine stromal-cell-derived factor 1α treatment as compared to wild-type β2-expressing cells. These two TM polar residues are totally conserved in other members of the β2 integrins in humans and across different species. Our results provide an example of the stabilizing effect of polar interactions within the low dielectric environment of the membrane interior and demonstrate its importance in the regulation of αLβ2 function.  相似文献   

2.
Integrins are a family of heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membranes. The transmembrane domain (TM) of integrin plays a critical role in mediating transition of the receptor from the default inactive to the active state on the cell surfaces. In this study, we successfully applied the substituted cysteine scanning accessibility method to determine the intracellular border of the integrin α(IIb)β(3) TM in the inactive and active states in living cells. We examined the aqueous accessibility of 75 substituted cysteines comprising the C terminus of both α(IIb) and β(3) TMs, the intracellular membrane-proximal regions, and the whole cytoplasmic tails, to the labeling of a membrane-permeable, cysteine-specific chemical biotin maleimide (BM). The active state of integrin α(IIb)β(3) heterodimer was generated by co-expression of activating partners with the cysteine-substituted constructs. Our data revealed that, in the inactive state, the intracellular lipid/aqueous border of α(IIb) TM was at Lys(994) and β(3) TM was at Phe(727) respectively; in the active state, the border of α(IIb) TM shifted to Pro(998), whereas the border of β(3) TM remained unchanged, suggesting that complex conformational changes occurred in the TMs upon α(IIb)β(3) inside-out activation. On the basis of the results, we propose a new inside-out activation mechanism for integrin α(IIb)β(3) and by inference, all of the integrins in their native cellular environment.  相似文献   

3.
Chng CP  Tan SM 《Proteins》2011,79(7):2203-2213
Integrins are transmembrane (TM) proteins that mediate bidirectional mechanical signaling between the extracellular matrix and the cellular cytoskeletal network. Each integrin molecule consists of non-covalently associated α- and β-subunits, with each subunit consisting of a large ectodomain, a single-pass TM helix, and a short cytoplasmic tail. Previously we found evidence for a polar interaction (hydrogen bond) in the outer membrane clasp (OMC) of the leukocyte integrin αLβ2 TMs that is absent in the platelet integrin αIIβ3 OMC. Here, we compare the self-assembly dynamics of αLβ2 and αIIβ3 TM helices in a model membrane using coarse-grained molecular dynamics simulations. We found that although αIIβ3 TM helices associate more easily, packing is suboptimal. In contrast, αLβ2 TM helices achieve close-to-optimal packing. This suggests that αLβ2 TM packing is more specific, possibly due to the interhelix hydrogen bond. Theoretical association free energy profiles show a deeper minimum at a smaller helix-helix separation for αLβ2 compared with αIIβ3. The αIIβ3 profile is also more rugged with energetic barriers whereas that of αLβ2 is almost without barriers. Disruption of the interhelix hydrogen bond in αLβ2 via the β2T686G mutation results in poorer association and a similar profile as αIIβ3. The OMC polar interaction in αLβ2 thus plays a significant role in the packing of the TM helices.  相似文献   

4.
Dimerization of transmembrane (TM) α helices of membrane receptors plays a key role in signaling. We show that molecular dynamics simulations yield models of integrin TM helix heterodimers, which agree well with available NMR structures. We use?a multiscale simulation approach, combining coarse-grained and subsequent atomistic simulation, to model the dimerization of wild-type (WT) and mutated sequences of the αIIb and β3 integrin TM helices. The WT helices formed a stable, right-handed dimer with the same helix-helix interface as in the published NMR structure (PDB: 2K9J). In contrast, the presence of disruptive mutations perturbed the interface between the helices, altering the conformational stability of the dimer. The αIIb/β3 interface was more flexible than that of, e.g., glycophorin A. This is suggestive of a role for alternative packing modes of the TM helices in transbilayer signaling.  相似文献   

5.
We have studied the role of loop 9 in the function of neuronal nicotinic receptors. By systematically mutating the residues in the loop we have determined that the most important amino acids determining the coupling of binding to gating are the ones closer to the transmembrane region. Single mutations at location E173 in homomeric α7 receptors destroyed their function by completely abolishing the current while preserving the expression at the membrane. In contrast, heteromeric receptor α3β4 with the same mutations retained some function. We conclude that loop 9 has a different role in the function of homomeric and heteromeric receptors.  相似文献   

6.
We have previously demonstrated that the highly conserved R209, that flanks the M1 transmembrane segment of nicotinic acetylcholine (ACh) receptors, is required for the transport of assembled homomeric neuronal α7 nicotinic ACh receptors to the cell surface. In the present paper we show that basic residues at positions 208 and 210 are necessary for the assembly of α7 receptors. On the contrary, a basic residue at position 210 of α3 subunit decreases the assembly of heteromeric neuronal α3β4 nicotinic ACh receptors. A basic residue at position 210 of the β4 subunit slightly decreases α3β4 receptor expression. We conclude that a pre-M1 RRR motif is necessary for the biogenesis of homomeric α-bungarotoxin-sensitive neuronal α7 nicotinic ACh receptors.  相似文献   

7.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

8.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix–helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of − 4.61 ± 0.04 kcal/mol at bicelle conditions where the sampling of random helix–helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of > 1 kcal/mol was obtained from helix–helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500 ± 100 s− 1 and 2.1 ± 0.1 s− 1, respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins.  相似文献   

10.
The β3 subunit of αIIbβ3 and αvβ3 integrins contains four epidermal growth factor (EGF)-like domains. Each domain harbors four disulfide bonds of which one is unique for integrins. We previously discerned a regulatory role of the EGF-4 Cys-560-Cys-583 unique bond for αIIbβ3 activation. In this study we further investigated the role of all four integrin unique bonds in both αIIbβ3 and αvβ3. We created β3 mutants harboring serine substitutions of each or both cysteines that disrupt the four unique bonds (Cys-437-Cys-457 in EGF-1, Cys-473-Cys-503 in EGF-2, Cys-523-Cys-544 in EGF-3, and Cys-560-Cys-583 in EGF-4) and transfected them into baby hamster kidney cells together with normal αv or αIIb. Flow cytometry was used to measure surface expression of αIIbβ3 and αvβ3 and their activity state by soluble fibrinogen binding. Most cysteine substitutions caused similarly reduced surface expression of both receptors. Disrupting all four unique disulfide bonds by single cysteine substitutions resulted in variable constitutive activation of αIIbβ3 and αvβ3. In contrast, whereas double C437S/C457S and C473S/C503S mutations yielded constitutively active αIIbβ3 and αvβ3, the C560S/C583S mutation did not, and the C523S/C544S mutation only yielded constitutively active αIIbβ3. Activation of C523S/C544S αvβ3 mutant by activating antibody and dithiothreitol was also impaired. Molecular dynamics of C523S/C544S β3 in αIIbβ3 but not in αvβ3 displayed an altered stable conformation. Our findings indicate that unique disulfide bonds in β3 differently affect the function of αIIbβ3 and αvβ3 and suggest a free sulfhydryl-dependent regulatory role for Cys-560-Cys-583 in both αIIbβ3 and αvβ3 and for Cys-523-Cys-544 only in αvβ3.  相似文献   

11.
We have investigated the protonation states of histidine residues (potential Bohr groups) in the deoxy form (T state) of human hemoglobin by direct determination of hydrogen (deuterium) positions with the neutron protein crystallography technique. The reversible binding of protons is key to the allosteric regulation of human hemoglobin. The protonation states of 35 of the 38 His residues were directly determined from neutron scattering omit maps, with 3 of the remaining residues being disordered. Protonation states of 5 equivalent His residues—αHis20, αHis50, αHis89, βHis143, and βHis146—differ between the symmetry-related globin subunits. The distal His residues, αHis58 and βHis63, are protonated in the α1β1 heterodimer and are neutral in α2β2. Buried residue αHis103 is found to be protonated in both subunits. These distal and buried residues have the potential to act as Bohr groups. The observed protonation states of His residues are compared to changes in their pKa values during the transition from the T to the R state and the results provide some new insights into our understanding of the molecular mechanism of the Bohr effect.  相似文献   

12.
A central region of the β2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from β1 and β7 to give the chimeras β2RN1 and β2RN7. Whilst the former construct failed to form heterodimer at the cell surface with αL, the later of these could be expressed together with the αL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the β2RB1 chimera failed to support LFA-1 expression. Thus the β1 specific residues of this region affect the interaction with the αL subunit. Whereas the αLβ2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the αLβ2BN1 and αLβ2BN7, as well as the αLβ2BN7, variants are more adhesive than the wildtype. These results suggest that an authentic β2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.  相似文献   

13.
Protein-protein interfaces are usually large and complementary surfaces, but specific side chains, representing energetic "hot spots," often contribute disproportionately to binding free energy. We used a computational method, comprehensive interface design, to identify hot spots in the interface between the stalk regions of the β3 and the complementary αIIb and αv integrin subunits. Using the Rosetta alanine-scanning and design algorithms to predict destabilizing, stabilizing, and neutral mutations in the β3 region extending from residues Lys(532) through Gly(690), we predicted eight alanine mutations that would destabilize the αIIbβ3 interface as well as nine predicted to destabilize the αvβ3 interface, by at least 0.3 kcal/mol. The mutations were widely and unevenly distributed, with four between residues 552 and 563 and five between 590 and 610, but none between 565 and 589, and 611 and 655. Further, mutations destabilizing the αvβ3 and αIIbβ3 interfaces were not identical. The predictions were then tested by introducing selected mutations into the full-length integrins expressed in Chinese hamster ovary cells. Five mutations predicted to destabilize αIIb and β3 caused fibrinogen binding to αIIbβ3, whereas three of four predicted to be neutral or stabilizing did not. Conversely, a mutation predicted to destabilize αvβ3, but not αIIbβ3 (D552A), caused osteopontin binding to αvβ3, but not fibrinogen binding to αIIbβ3. These results indicate that stability of the distal stalk interface is involved in constraining integrins in stable, inactive conformations. Further, they demonstrate the ability of comprehensive interface design to identify functionally significant integrin mutations.  相似文献   

14.
The glycine receptor (GlyR) exists either in homomeric α or heteromeric αβ forms. Its agonists bind at extracellular subunit interfaces. Unlike subunit interfaces from the homomeric α GlyR, subunit interfaces from the heteromeric αβ GlyR have not been characterized unambiguously because of the existence of multiple types of interface within single receptors. Here, we report that, by reconstituting β+/α- interfaces in a homomeric GlyR (αChb+a- GlyR), we were able to functionally characterize the αβ GlyR β+/α- interfaces. We found that the β+/α- interface had a higher agonist sensitivity than that of the α+/α- interface. This high sensitivity was contributed primarily by loop A. We also found that the β+/α- interface differentially modulates the agonist properties of glycine and taurine. Using voltage clamp fluorometry, we found that the conformational changes induced by glycine binding to the β+/α- interface were different from those induced by glycine binding to the α+/α- interface in the α GlyR. Moreover, the distinct conformational changes found at the β+/α- interface in the αChb+a- GlyR were also found in the heteromeric αβ GlyR, which suggests that the αChb+a- GlyR reconstitutes structural components and recapitulates functional properties, of the β+/α- interface in the heteromeric αβ GlyR. Our investigation not only provides structural and functional information about the GlyR β+/α- interface, which could direct GlyR β+/α- interface-specific drug design, but also provides a general methodology for unambiguously characterizing properties of specific protein interfaces from heteromeric proteins.  相似文献   

15.
16.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.  相似文献   

17.
In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ~4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors.  相似文献   

18.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

19.
The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.  相似文献   

20.
Although α7 nicotinic receptors are predominantly homopentamers, previous reports have indicated that α7 and β2 subunits are able to form heteromers. We have studied whether other nicotinic receptor subunits can also assemble with α7 subunits and the effect of this potential association. Coexpression of α7 with α2, α3, or β4 subunits reduced to about half, surface α‐bungarotoxin binding sites and acetylcholine‐gated currents. This is probably because of inhibition of membrane trafficking, as the total amount of α7 subunits was similar in all cases and a significant proportion of mature α7 receptors was present inside the cell. Only β4 subunits appeared to directly associate with α7 receptors at the membrane and these heteromeric receptors showed some kinetic and pharmacological differences when compared with homomeric α7 receptors. Finally, we emulated the situation of bovine chromaffin cells in Xenopus laevis oocytes by using the same proportion of α3, β4, α5, and α7 mRNAs, finding that α‐bungarotoxin binding was similarly reduced in spite of increased currents, apparently mediated by α3β4(α5) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号