首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orientation of many membrane proteins is determined by the asymmetric distribution of positively charged amino acid residues in cytoplasmic and translocated loops. The positive-inside rule states that loops with large amounts of these residues tend to have cytoplasmic locations. Orientations of constructs derived from the inner membrane protein leader peptidase from Escherichia coli were found to depend on the anionic phospholipid content of the membrane. Lowering the contents of anionic phospholipids facilitated membrane passage of positively charged loops. On the other hand, elevated contents of acidic phospholipids in the membrane rendered translocation more sensitive to positively charged residues. The results demonstrate that anionic lipids are determinants of membrane protein topology and suggest that interactions between negatively charged phospholipids and positively charged amino acid residues contribute to the orientation of membrane proteins.  相似文献   

2.
Membrane protein insertion and topogenesis generally occur at the Sec61 translocon in the endoplasmic reticulum membrane. During this process, membrane spanning segments may adopt two distinct orientations with either their N- or C-terminus translocated into the ER lumen. While different topogenic determinants in membrane proteins, such as flanking charges, polypeptide folding, and hydrophobicity, have been identified, it is not well understood how the translocon and/or associated components decode them. Here we present evidence that the translocon-associated protein (TRAP) complex is involved in membrane protein topogenesis in vivo. Small interfering RNA (siRNA)-mediated silencing of the TRAP complex in HeLa cells enhanced the topology effect of mutating the flanking charges of a signal-anchor, but not of increasing signal hydrophobicity. The results suggest a role of the TRAP complex in moderating the ‘positive-inside’ rule.  相似文献   

3.
Protein targeting to the endoplasmic reticulum is mediated by signal or signal-anchor sequences. They also play an important role in protein topogenesis, because their orientation in the translocon determines whether their N- or C-terminal sequence is translocated. Signal orientation is primarily determined by charged residues flanking the hydrophobic core, whereby the more positive end is predominantly positioned to the cytoplasmic side of the membrane, a phenomenon known as the "positive-inside rule." We tested the role of conserved charged residues of Sec61p, the major component of the translocon in Saccharomyces cerevisiae, in orienting signals according to their flanking charges by site-directed mutagenesis by using diagnostic model proteins. Mutation of R67, R74, or E382 in Sec61p reduced C-terminal translocation of a signal-anchor protein with a positive N-terminal flanking sequence and increased it for signal-anchor proteins with positive C-terminal sequences. These mutations produced a stronger effect on substrates with greater charge difference across the hydrophobic core of the signal. For some of the substrates, a charge mutation in Sec61p had a similar effect as one in the substrate polypeptides. Although these three residues do not account for the entire charge effect in signal orientation, the results show that Sec61p contributes to the positive-inside rule.  相似文献   

4.
X-ray crystallography has revealed that many integral membrane proteins consist of two domains with a similar fold but opposite (antiparallel) orientation in the membrane. The proteins are believed to have evolved by gene duplication and gene fusion events from a dual topology ancestral membrane protein, that adapted both orientations in the membrane and formed antiparallel homodimers. Here, we present a detailed analysis of the DUF606 family of bacterial membrane proteins that contains the entire collection of intermediate states of such an evolutionary pathway: single genes that would code for dual topology homodimeric proteins, paired genes coding for homologous proteins with a fixed but opposite orientation in the membrane that would form heterodimers, and fused genes that encode antiparallel two-domain fusion proteins. Two types of paired genes can be discriminated corresponding to the order in which the genes coding for the two oppositely oriented proteins occur in the operon. On the protein level, the heterodimers resulting from the two types of gene pairs are indistinguishable. In contrast, two types of fused genes corresponding to the two possible orders in which the oppositely oriented domains are present in the encoded proteins, do result in discernible types of proteins. The large number of genetic and protein states in the DUF606 family allowed for a detailed phylogenic analysis that revealed a total of nine independent duplication events in the DUF606 family, five of which resulted in paired genes, and four resulted in fused genes. Noticeably, there was no evidence for a sequential mechanism in which fusions evolve from a pair of genes. Rather, an evolutionary mechanism is proposed by which antiparallel two-domain proteins are the direct result of a gene duplication event. Combining the phylogeny of proteins and hosting microorganisms allowed for a reconstruction of the evolutionary pathway.  相似文献   

5.
The SecY (bacteria) and Sec61 (eukaryotes) translocon complexes, or protein-conducting channels, work in concert with bound ribosomes to insert proteins into membranes during the first step of membrane protein assembly. The crystallographic structure of an archaeal SecY translocon provides dramatic new insights into the mechanism of translocon function. This structure suggests an explanation for how the translocon can aid in establishing membrane protein topology via the positive-inside rule. The folding of membrane proteins may begin in the ribosome exit tunnel, before entering the translocon, according to cryo-electron microscopy and biophysical studies.  相似文献   

6.
We have performed a comparative analysis of amino acid distributions in predicted integral membrane proteins from a total of 107 genomes. A procedure for identification of membrane spanning helices was optimized on a homology-reduced data set of 170 multi-spanning membrane proteins with experimentally determined topologies. The optimized method was then used for extraction of highly reliable partial topologies from all predicted membrane proteins in each genome, and the average biases in amino acid distributions between loops on opposite sides of the membrane were calculated. The results strongly support the notion that a biased distribution of Lys and Arg residues between cytoplasmic and extra-cytoplasmic segments (the positive-inside rule) is present in most if not all organisms.  相似文献   

7.
Higy M  Junne T  Spiess M 《Biochemistry》2004,43(40):12716-12722
Most eukaryotic membrane proteins are cotranslationally integrated into the endoplasmic reticulum membrane by the Sec61 translocation complex. They are targeted to the translocon by hydrophobic signal sequences, which induce the translocation of either their N- or their C-terminal sequence. Signal sequence orientation is largely determined by charged residues flanking the apolar sequence (the positive-inside rule), folding properties of the N-terminal segment, and the hydrophobicity of the signal. Recent in vivo experiments suggest that N-terminal signals initially insert into the translocon head-on to yield a translocated N-terminus. Driven by a local electrical potential, the signal may invert its orientation and translocate the C-terminal sequence. Increased hydrophobicity slows down inversion by stabilizing the initial bound state. In vitro cross-linking studies indicate that signals rapidly contact lipids upon entering the translocon. Together with the recent crystal structure of the homologous SecYEbeta translocation complex of Methanococcus jannaschii, which did not reveal an obvious hydrophobic binding site for signals within the pore, a model emerges in which the translocon allows the lateral partitioning of hydrophobic segments between the aqueous pore and the lipid membrane. Signals may return into the pore for reorientation until translation is terminated. Subsequent transmembrane segments in multispanning proteins behave similarly and contribute to the overall topology of the protein.  相似文献   

8.
The Glut1 glucose transporter is one of over 300 members of the major facilitator superfamily of membrane transporters. These proteins are extremely diverse in substrate specificity and differ in their transport mechanisms. The two most common features shared by many members of this superfamily are the presence of 12 predicted transmembrane segments and an amino acid motif, R-X-G-R-R, present at equivalent positions within the cytoplasmic loops joining transmembrane segments 2-3 and 8-9. The structural and functional roles of the arginine residues within these motifs in Glut1 were investigated by expression of site-directed mutant transporters in Xenopus oocytes followed by analyses of intrinsic transport activity and the membrane topology of mutant glycosylation-scanning reporter Glut1 molecules. Substitution of lysine residues for the cluster of 3 arginine residues in each of the 2 cytoplasmic pentameric motifs of Glut1 revealed no absolute requirement for arginine side chains at any of the 6 positions for transport of 2-deoxyglucose. However, removal of the 3 positive charges at either site by substitution of glycines for the arginines completely abolished transport activity as the result of a local perturbation in the membrane topology in which the cytoplasmic loop was aberrantly translocated into the exoplasm along with the two flanking transmembrane segments. Substitution of lysines for the arginines had no affect on membrane topology. We conclude that the positive charges in the R-X-G-R-R motif form critical local cytoplasmic anchor points involved in determining the membrane topology of Glut1. These data provide a simple explanation for the presence of this conserved amino acid motif in hundreds of functionally diverse membrane transporters that share a common predicted membrane topology.  相似文献   

9.
Integral membrane proteins from a wide variety of sources conform to a "positive-inside rule," with many more positively charged amino acids in their cytoplasmic as compared to extracytoplasmic domains. A growing body of experimental work also points to positively charged residues in regions flanking the apolar transmembrane segments as being the main topological determinants. In this paper, we report a systematic comparison of the effects of positively (Arg, Lys, His) as well as negatively (Asp, Glu) charged residues on the membrane topology of a model Escherichia coli inner membrane protein. Our results show that positive charge is indeed the major factor determining the transmembrane topology, with Arg and Lys being of nearly equal efficiency. His, although normally a very weak topological determinant, can be potentiated by a lowering of the cytoplasmic pH. Asp and Glu affect the topology to similar extents and only when present in very high numbers.  相似文献   

10.
A new strategy for predicting the topology of bacterial inner membrane proteins is proposed on the basis of hydrophobicity analysis, automatic generation of a set of possible topologies and ranking of these according to the positive-inside rule. A straightforward implementation with no attempts at optimization predicts the correct topology for 23 out of 24 inner membrane proteins with experimentally determined topologies, and correctly identifies 135 transmembrane segments with only one overprediction.  相似文献   

11.
The human reduced folate carrier (RFC) is the major membrane transport system for both reduced folates and chemotherapeutic antifolate drugs, such as methotrexate (MTX). Although the RFC protein has been subjected to intensive study in order to identify critical structural and functional determinants of transport, it is impossible to assess the significance of these studies without characterizing the essential domain structure and membrane topology. The primary amino acid sequence from the cloned cDNAs predicts that the human RFC protein has 12 transmembrane domains (TMDs) with a large cytosolic loop between TMDs 6 and 7, and cytosolic-facing N- and C-termini. To establish the RFC membrane topology, a hemagglutinin (HA) epitope was inserted into the individual predicted intracellular and extracellular loops. HA insertions into putative TMD interconnecting loops 3/4, 6/7, 7/8, and 8/9, and the N- and C-termini all preserved MTX transport activity upon expression in transport-impaired K562 cells. Immunofluorescence detection with HA-specific antibody under both permeabilized and non-permeabilized conditions confirmed extracellular orientations for loops 3/4 and 7/8, and cytosolic orientations for loops 6/7 and 8/9, and the N- and C-termini. Insertion of a consensus N-glycosylation site [NX(S/T)] into putative loops 5/6, 8/9, and 9/10 of deglycosylated RFC-Gln(58) had minimal effects on MTX transport. Analysis of glycosylation status on Western blots suggested an extracellular orientation for loop 5/6, and intracellular orientations for loops 8/9 and 9/10. Our findings strongly support the predicted topology model for TMDs 1-8 and the C-terminus of human RFC. However, our results raise the possibility of an alternative membrane topology for TMDs 9-12.  相似文献   

12.
The human reduced folate carrier (RFC) is the major membrane transport system for both reduced folates and chemotherapeutic antifolate drugs, such as methotrexate (MTX). Although the RFC protein has been subjected to intensive study in order to identify critical structural and functional determinants of transport, it is impossible to assess the significance of these studies without characterizing the essential domain structure and membrane topology. The primary amino acid sequence from the cloned cDNAs predicts that the human RFC protein has 12 transmembrane domains (TMDs) with a large cytosolic loop between TMDs 6 and 7, and cytosolic-facing N- and C-termini. To establish the RFC membrane topology, a hemagglutinin (HA) epitope was inserted into the individual predicted intracellular and extracellular loops. HA insertions into putative TMD interconnecting loops 3/4, 6/7, 7/8, and 8/9, and the N- and C-termini all preserved MTX transport activity upon expression in transport-impaired K562 cells. Immunofluorescence detection with HA-specific antibody under both permeabilized and non-permeabilized conditions confirmed extracellular orientations for loops 3/4 and 7/8, and cytosolic orientations for loops 6/7 and 8/9, and the N- and C-termini. Insertion of a consensus N-glycosylation site [NX(S/T)] into putative loops 5/6, 8/9, and 9/10 of deglycosylated RFC-Gln58 had minimal effects on MTX transport. Analysis of glycosylation status on Western blots suggested an extracellular orientation for loop 5/6, and intracellular orientations for loops 8/9 and 9/10. Our findings strongly support the predicted topology model for TMDs 1-8 and the C-terminus of human RFC. However, our results raise the possibility of an alternative membrane topology for TMDs 9-12.  相似文献   

13.
The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.  相似文献   

14.
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.  相似文献   

15.
The transmembrane topology of the Acr3 family arsenite transporter Acr3 from Bacillus subtilis was analysed experimentally using translational fusions with alkaline phosphatase and green fluorescent protein and in silico by topology modelling. Initial topology prediction resulted in two models with 9 and 10 TM helices respectively. 32 fusion constructs were made between truncated forms of acr3 and the reporter genes at 17 different sites throughout the acr3 sequence to discriminate between these models. Nine strong reporter protein signals provided information about the majority of the locations of the cytoplasmic and extracellular loops of Acr3 and showed that both the N- and the C-termini are located in the cytoplasm. Two ambiguous data points indicated the possibility of an alternative 8 helix topology. This possibility was investigated using another 10 fusion variants, but no experimental support for the 8 TM topology was obtained. We therefore conclude that Acr3 has 10 transmembrane helices. Overall, the loops which connect the membrane spanning segments are short, with cytoplasmic loops being somewhat longer than the extracellular loops. The study provides the first ever experimentally derived structural information on a protein of the Acr3 family which constitutes one of the largest classes of arsenite transporters.  相似文献   

16.
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C‐terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.  相似文献   

17.
A genetic system for directly synthesizing eukaryotic membrane proteins in Escherichia coli and assessing their ability to insert into the bacterial cytoplasmic membrane is described. The components of this system are the direct expression vector, pYZ4, and the mature beta-lactamase (BlaM) cassette plasmid, pYZ5, that can be used to generate translational fusions of BlaM to any synthesized membrane protein. The beta-subunit of sheep-kidney Na,K-ATPase (beta NKA), a class-II plasma membrane protein, was synthesized in E. coli using pYZ4, and BlaM was fused to a normally extracellular portion of it. The fusion protein conferred ampicillin resistance on individual host cells, indicating that the BlaM portion had been translocated to the bacterial periplasm, and that, by inference, the eukaryotic plasma-membrane protein can insert into the bacterial cytoplasmic membrane. A series of 31 beta NKA::BlaM fusion proteins was isolated and characterised to map the topology of the eukaryotic plasma membrane protein with respect to the bacterial cytoplasmic membrane. This analysis revealed that the organisation of the beta NKA in the E. coli cytoplasmic membrane was indistinguishable from that in its native plasma membrane.  相似文献   

18.
The Na/Ca-K exchanger (NCKX) is a polytopic membrane protein that plays a critical role in Ca(2+) homeostasis in retinal rod and cone photoreceptors. The NCKX1 isoform is found in rods, while the NCKX2 isoform is found in cones, in retinal ganglion cells, and in various parts of the brain. The topology of the Na/Ca-K exchanger is thought to consist of two large hydrophilic loops and two sets of transmembrane spanning segments (TMs). The first large hydrophilic loop is located extracellularly at the N-terminus; the other is cytoplasmic and separates the two sets of TMs. The TMs consist of either five and five membrane spanning helices or five and six membrane spanning helices, depending upon the predictive algorithm used. Little specific information is yet available on the orientation of the various membrane spanning helices and the localization of the short loops connecting these helices. In this study, we have determined which of the connecting loops are exposed to the extracellular milieu using two different methods: accessibility of substituted cysteine residues and insertion of N-glycosylation sites. The two methods resulted in a consistent NCKX topology in which the two sets of TMs each contain five membrane spanning helices. Our new model places what was previously membrane spanning helix six in the cytoplasm, which places the C-terminus on the extracellular surface. Surprisingly, this NCKX topology model is different from the current NCX topology model with respect to the C-terminal three membrane helices.  相似文献   

19.
《Molecular membrane biology》2013,30(2-3):114-122
Abstract

Glucosyltransferases (Gtrs) and O-acetyltransferase (Oac) are integral membrane proteins embedded within the cytoplasmic membrane of Shigella flexneri. Gtrs and Oac are responsible for unidirectional host serotype conversion by altering the epitopic properties of the bacterial surface lipopolysaccharide (LPS) O-antigen. In this study, we present the membrane topology of a recently recognized Gtr, GtrIc, which is known to mediate S. flenxeri serotype switching from 1a to 1c. The GtrIc topology is shown to deviate from those typically seen in S. flexneri Gtrs. GtrIc has 11 hydrophilic loops, 10 transmembrane helices, a double intramembrane dipping loop 5, and a cytoplasmic N- and C-terminus. Along with a unique membrane topology, the identification of non-critical Gtr-conserved peptide motifs within large periplasmic loops (N-terminal D/ExD/E and C-terminal KK), which have previously been proven essential for the activity of other Gtrs, challenge current opinions of a similar mechanism for enzyme function between members of the S. flexneri Gtr family.  相似文献   

20.
The NADPH oxidase Nox4 is a multi-pass membrane protein responsible for the generation of reactive oxygen species that are implicated in cellular signaling but may also cause pathological situations when dysregulated. Although topological organization of integral membrane protein dictates its function, only limited experimental data describing Nox4's topology are available.To provide deeper insight on Nox4 structural organization, we developed a novel method to determinate membrane protein topology in their cellular environment, named Topological Determination by Ubiquitin Fusion Assay (ToDUFA). It is based on the proteolytic capacity of the deubiquitinase enzymes to process ubiquitin fusion proteins. This straightforward method, validated on two well-known protein's topologies (IL1RI and Nox2), allowed us to discriminate rapidly the topological orientation of protein's domains facing either the nucleocytosolic or the exterior/luminal compartments. Using this method, we were able for the first time to determine experimentally the topology of Nox4 which consists of 6 transmembrane domains with its N- and C-terminus moieties facing the cytosol. While the first, third and fifth loops of Nox4 protein are extracellular; the second and fourth loops are located in the cytosolic side. This approach can be easily extended to characterize the topology of all others members of the NADPH oxidase family or any multi-pass membrane proteins.Considering the importance of protein topology knowledge in cell biology research and pharmacological development, we believe that this novel method will represent a widely useful technique to easily uncover complex membrane protein's topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号