首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-site fluorescence resonance energy transfer (FRET) measurements have been made to determine how two intra-molecular distances contract in the sub-millisecond collapse reaction that occurs initially during the refolding of the small protein barstar. FRET measurements were made on two, single-Cys and single-Trp-containing mutant forms of barstar, Cys25 and Cys62, in each of which a thionitrobenzoate (TNB) adduct was attached to the cysteine thiol. In each protein, the core tryptophan, Trp53, acted as the FRET donor, and the TNB adduct, located either at C25 or at C62, acted as the FRET acceptor. The stabilities as well as observable folding kinetics of the Cys25 and Cys62 mutant proteins were found to be identical. The presence of the TNB adduct on the cysteine did not alter the stability or folding kinetics of either protein. Thus, the FRET-monitored changes in the two labeled mutant proteins, Cys25-TNB and Cys62-TNB, could be compared directly. Refolding was commenced from unfolded protein in 8M urea, and both the Trp53 to C25-TNB distance and the Trp53 to C62-TNB distance were found to contract upon dilution of urea. The extent of contraction of each distance, which was measured at a few milliseconds of refolding, was dependent continuously on the concentration of urea present during refolding, and was different for the two distances. For either FRET pair, the gradual contraction of distance with a decrease in the concentration of urea in which refolding occurs, was continuous with the contraction of the polypeptide chain that is seen with a decrease in the concentration of urea in the range in which the protein remains completely unfolded. It therefore appears that the products of the initial sub-millisecond refolding reaction of barstar are collapsed forms, whose dimensions do not change cooperatively in an all-or-none manner, but instead, change gradually with a change in concentration of urea. Thus, the sub-millisecond polypeptide chain collapse reaction of barstar upon denaturant dilution, appears to be a continuous structural transition.  相似文献   

2.
Initial polypeptide chain collapse plays a major role in the development of subsequent structure during protein folding, but it has been difficult to elucidate the coupling between its cooperativity and specificity. To better understand this important aspect of protein folding, nine different intramolecular distances in the protein have been measured by fluorescence resonance energy transfer (FRET) in the product(s) of the initial, sub-millisecond collapse reaction during the folding of barstar, under different folding conditions. All nine distances contract in these initial folding products, when the denaturant concentration is reduced. Two of these distances were also measured in peptides corresponding to sequence segments 38-55 and 51-69 of the protein. Surprisingly, both distances do not contract in the peptides which remain fully unfolded when the denaturant concentration is reduced. This suggests that the contraction of at least some segments of the polypeptide chain may be facilitated only by contraction of other segments. In the case of the initial product of folding of the protein, the dependence on denaturant concentration of the relative change in each distance suggests that there are two components to the initial folding reaction. One is a nonspecific component, which appears to be driven by the change in denaturant concentration that is used to initiate refolding. This component corresponds to the collapse of completely unfolded protein (U) to unfolded protein in refolding conditions (U(C)). The extent of nonspecific collapse can be predicted by the response of completely unfolded protein to a change in denaturant concentration. All distances undergo such solvent-induced contraction, but each distance contracts to a different extent. There is also a specific component to initial sub-millisecond folding, in which some distances (but not all) contract more than that predicted by solvent-induced contraction. The observation that only some of the distances undergo contraction over and above solvent-induced contraction, suggest that this specific component is associated with the formation of a specific intermediate (I(E)). FRET efficiency and distance change differently for the different donor-acceptor pairs, with a change in denaturant concentration, indicating that the formation or dissolution of structure in U(C) and I(E) does not happen in a synchronized manner across different regions of the protein molecule. Also, all nine FRET efficiencies and intramolecular distances in the product(s) of sub-ms folding, change continuously with a change in denaturant concentration. Hence, it appears that the transitions from U to U(C) and to I(E) are gradual transformations, and not all-or-none structural transitions. Nevertheless, the product of these gradual transitions, I(E), possesses specific structure.  相似文献   

3.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

4.
It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59–heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~ 27 μs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency > 90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.  相似文献   

5.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein.  相似文献   

6.
Dasgupta A  Udgaonkar JB 《Biochemistry》2012,51(23):4723-4734
Unstable intermediates on the folding pathways of proteins can be stabilized sufficiently so that they accumulate to detectable extents by the addition of a suitable cosolute. Here, the effect of sodium sulfate (Na(2)SO(4)) on the folding of the SH3 domain of PI3 kinase was investigated in the presence of guanidine hydrochloride (GdnHCl) using intrinsic tyrosine fluorescence and 1-anilinonaphthalene-8-sulfonate (ANS) binding. The free energy of unfolding in water of the native state (N) increases linearly with Na(2)SO(4) concentration, indicating stabilization via the Hofmeister effect. The addition of 0.5 M Na(2)SO(4) causes accumulation of an early intermediate L, which manifests itself as (1) a sub-millisecond change in tyrosine and ANS fluorescence and (2) a curvature in the chevron plot. It is shown that L is a specific structural component of the initially collapsed ensemble. An intermediate, M, also accumulates in unfolding studies conducted in the presence of 0.5 M Na(2)SO(4) and manifests itself by causing a curvature in the unfolding arm of the chevron. M is shown to be a wet molten globule that binds to ANS under unfolding conditions and is stabilized to the same extent as N in the presence of Na(2)SO(4). A four-state U ? L ? M ? N scheme satisfactorily modeled the kinetic data. Thus, the folding of the PI3K SH3 domain in the presence of salt commences via the formation of a structured intermediate ensemble L, which accumulates before the rate-limiting step of folding. L subsequently proceeds to N via the late intermediate M that forms after the rate-limiting transition of folding.  相似文献   

7.
Unfolding of the immunoglobulin binding domain B1 of streptococcal protein G (GB1) was induced by guanidine hydrochloride (GdnHCl) and studied by circular dichroism, steady-state, and time-resolved fluorescence spectroscopy. The fluorescence methods employed the single tryptophan residue of GB1 as an intrinsic reporter. While the transitions monitored by circular dichroism and steady-state fluorescence coincided with each other, the transitions followed by dynamic fluorescence were markedly different. Specifically, fluorescence anisotropy data showed that a relaxation spectrum of tryptophan contained a slow motion with relaxation times of 9 ns in the native state and 4 ns in the unfolded state in 6 M GdnHCl. At intermediate GdnHCl concentrations of 3.8-4.2 M, however, the slow relaxation time increased to 18 ns. The fast nanosecond motion had an average time of 0.8 ns and showed no dependence on the formation of native structure. Overall, dynamic fluorescence revealed two preliminary stages in GB1 folding, which are equated with the formation of local structure in the beta(3)-strand hairpin and the initial collapse. Both stages exist without alpha-helix formation, i. e., before the appearance of any ordered secondary structure detectable by circular dichroism. Another stage in GB1 folding might exist at very low ( approximately 1 M) GdnHCl concentrations.  相似文献   

8.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

9.
The structure and dynamics of the unfolded form of a protein are expected to play critical roles in determining folding pathways. In this study, the urea and guanidine hydrochloride (GdnHCl)-unfolded forms of the small protein barstar were explored by time-resolved fluorescence techniques. Barstar was labeled specifically with thionitrobenzoate (TNB), by coupling it to the thiol side-chain of a cysteine residue at one of the following positions on the sequence: 14, 25, 40, 42, 62, 82 and 89, in single cysteine-containing mutant proteins. Seven intra-molecular distances (R(DA)) under unfolding conditions were estimated from measurements of time-resolved fluorescence resonance energy transfer between the donor Trp53 and the non-fluorescent acceptor TNB coupled to one of the seven cysteine side-chains. The unfolded protein chain expands with an increase in the concentration of the denaturants. The extent of expansion was found to be non-uniform, with different intra-molecular distances expanding to different extents. In general, shorter distances were found to expand less when compared to longer spans. The extent of expansion was higher in the case of GdnHCl when compared to urea. A comparison of the measured values of R(DA) with those derived from a model based on excluded volume, revealed that while shorter spans showed good agreement, the experimental values of R(DA) of longer spans were smaller when compared to the theoretical values. Sequence-specific flexibility of the polypeptide was determined by time-resolved fluorescence anisotropy decay measurements on acrylodan or 1,5-IAEDANS labeled single cysteine-containing proteins under unfolding conditions. Rotational dynamics derived from these measurements indicated that the level of flexibility increased with increase in the concentration of denaturants and showed a graded increase towards the C-terminal end. Taken together, these results appear to indicate the presence of specific non-random coil structures and show that the deviation from random coil structure is different for the two denaturants.  相似文献   

10.
The intestinal fatty acid binding protein is one of a family of proteins that are composed of two beta-sheets surrounding a large interior cavity into which the ligand binds. Glycine residues occur in many of the turns between adjacent antiparallel beta-strands. In previous work, the effect of replacing these glycine residues with valine has been examined with stopped flow instrumentation using intrinsic tryptophan fluorescence spectroscopy [Kim and Frieden (1998) Protein Sci. 7, 1821-1828]. To resolve the burst phase missing in the stopped flow measurements, these valine mutants have been reexamined with sub-millisecond continuous flow instrumentation. Some of the glycine residues have also been replaced with proline, and the folding reactions of these proline mutants have been compared with those of their valine counterparts. In all cases, the stability of the protein is decreased, but some turns appear to be more critical for final structure stabilization than others. Surprisingly, the rate constants observed for all the mutants measured by sub-millisecond continuous flow methods are quite similar (1400-3000 s(-1)), and in all the mutants, there is a shift in the fluorescence emission maximum from that of the unfolded protein to lower wavelengths, suggesting some collapse of the unfolded state within 200 micros. In contrast to the rate constants observed for the initial folding events measured by the sub-millisecond continuous flow method, the rate constants for the slower phase observed in the stopped flow instrument vary widely for the different mutants. The latter step appears to be related to side chain stabilization rather than secondary structure formation. It is also shown that the ligand binds tightly only to the native protein and not to any intermediate forms.  相似文献   

11.
Most globular protein chains, when transferred from high to low denaturant concentrations, collapse instantly before they refold to their native state. The initial compaction of the protein molecule is assumed to have a key effect on the folding pathway, but it is not known whether the earliest structures formed during or instantly after collapse are defined by local or by non-local interactions—that is, by secondary structural elements or by loop closure of long segments of the protein chain. Stable closure of one or several long loops can reduce the chain entropy at a very early stage and can prevent the protein from following non-productive pathways whose number grows exponentially with the length of the protein chain. In Escherichia coli adenylate kinase (AK), about seven long loops define the topology of the native structure. We selected four loop-forming sections of the chain and probed the time course of loop formation during refolding of AK. We labeled the termini of the loop segments with tryptophan and cysteine-5-amidosalicylic acid. This donor-acceptor pair of probes used with fluorescence resonance excitation energy transfer spectroscopy (FRET) is suitable for detecting very short distances and thus is able to distinguish between random and specific compactions. Refolding of AK was initiated by stopped-flow mixing, followed simultaneously by donor and acceptor fluorescence, and analyzed in terms of energy transfer efficiency and distance. In the collapsed state of AK, observed after the 5-ms dead time of the instrument, one of the selected segments shows a native-like separation of its termini; it forms a loop already in the collapsed state. A second segment that includes the first but is longer by 15 residues shows an almost native-like separation of its termini. In contrast, a segment that is shorter but part of the second segment shows a distance separation of its termini as high as a segment that spans almost the whole protein chain. We conclude that a specific network of non-local interactions, the closure of one or several loops, can play an important role in determining the protein folding pathway at its early phases.  相似文献   

12.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

13.
Global hairpin folding of tau in solution   总被引:1,自引:0,他引:1  
The microtubule-associated protein tau stabilizes microtubules in its physiological role, whereas it forms insoluble aggregates (paired helical filaments) in Alzheimer's disease. Soluble tau is considered a natively unfolded protein whose residual folding and intramolecular interactions are largely undetermined. In this study, we have applied fluorescence resonance energy transfer (FRET) and electron paramagnetic resonance (EPR) to examine the proximity and flexibility of tau domains and the global folding. FRET pairs spanning the tau molecule were created by inserting tryptophans (donor) and cysteines (labeled with IAEDANS as an acceptor) by site-directed mutagenesis. The observed FRET distances were significantly different from those expected for a random coil. Notably, the C-terminal end of tau folds over into the vicinity of the microtubule-binding repeat domain, the N-terminus remains outside the FRET distance of the repeat domain, yet both ends of the molecule approach one another. The interactions between the domains were obliterated by denaturation in GdnHCl. Paramagnetic spin-labels attached in various domains of tau were analyzed by EPR and exhibited a high mobility throughout. The data indicate that tau retains some global folding even in its "natively unfolded" state, combined with the high flexibility of the chain.  相似文献   

14.
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.  相似文献   

15.
16.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

17.
The purpose of this investigation is to characterize the reduced state of RNase A (r-RNase A) in terms of (i) intramolecular distances, (ii) the sequence of formation of stable loops in the initial stages of folding, and (iii) the unfolding transitions induced by GdnHCl. This is accomplished by identifying specific subdomain structures and local and long-range interactions that direct the folding process of this protein and lead to the native fold and formation of the disulfide bonds. Eleven pairs of dispersed sites in the RNase A molecule were labeled with fluorescent donor and acceptor probes, and the distributions of intramolecular distances (IDDs) were determined by means of time-resolved dynamic nonradiative excitation energy transfer (TR-FRET) measurements. The mutants were designed to search for (a) a possible nonrandom fold of the backbone in the collapsed state and (b) possible loops stabilized by long-range interactions. It was found that, under folding conditions, (i) the labeled mutants of r-RNase A in refolding buffer (the R(N) state) exhibit features of specific (nonrandom) compact but very dispersed subdomain structures (indicated by short mean distances, broad IDDs, and a weak dependence of the mean distances on segment length), (ii) the backbone fold in the C-terminal beta-like portion of the molecule appears to adopt a native-like overall fold, (iii) the N-terminal alpha-like portion of the chain is separated from the C-terminal core by very large intramolecular distances, larger than those in the crystal structure, and (iv) perturbations by addition of GdnHCl reveal several conformational transitions in different sections of the chain. Addition of GdnHCl to the native disulfide-intact protein provided a reference state for the extent of expansion of intramolecular distances under denaturing conditions. In conclusion, r-RNase A under folding conditions (the R(N) state) is poised for the final folding step(s) with a native-like trace of the chain fold but a large separation between the two subdomains which is then decreased upon introduction of three of the four native disulfide cross-links.  相似文献   

18.
Equilibrium denaturation of streptomycin adenylyltransferase (SMATase) has been studied by CD spectroscopy, fluorescence emission spectroscopy, and binding of the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show retention of 90% native-like secondary structure at 0.5 M guanidine hydrochloride (GdnHCl). The mean residue ellipticities at 222 nm and enzyme activity plotted against GdnHCl concentration showed loss of about 50 and 75% of secondary structure and 35 and 60% of activity at 0.75 and 1.5 M GdnHCl, respectively. At 6 M GdnHCl, there was loss of secondary structure and activity leading to the formation of GdnHCl-induced unfolded state as evidenced by CD and fluorescence spectroscopy as well as by measuring enzymatic activity. The denaturant-mediated decrease in fluorescence intensity and 5 nm red shift of λmax point to gradual unfolding of SMATase when GdnHCl is added up from 0.5 M to a maximum of 6 M. Decreasing of ANS binding and red shift (∼5 nm) were observed in this state compared to the native folded state, indicating the partial destruction of surface hydrophobic patches of the protein molecule on denaturation. Disruption of disulfide bonds in the protein resulted in sharp decrease in surface hydrophobicity of the protein, indicating that the surface hydrophobic patches are held by disulfide bonds even in the GdnHCl denatured state. Acrylamide and potassium iodide quenching of the intrinsic tryptophan fluorescence of SMATase showed that the native protein is in folded conformation with majority of the tryptophan residues exposed to the solvent, and about 20% of them are in negatively charged environment. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 11, pp. 1514–1523.  相似文献   

19.
Although it has been recently shown that unfolded polypeptide chains undergo a collapse on transfer from denaturing to native conditions, the forces determining the dynamics and the size of the collapsed form have not yet been understood. Here, we use single-molecule fluorescence resonance energy transfer experiments on the small protein barstar to characterize the unfolded chain in guanidinium chloride (GdmCl) and urea. The unfolded protein collapses on decreasing the concentration of denaturants. Below the critical concentration of 3.5 M denaturant, the collapse in GdmCl leads to a more dense state than in urea. Since it is known that GdmCl suppresses electrostatic interactions, we infer that Coulomb forces are the dominant forces acting in the unfolded barstar under native conditions. This hypothesis is clearly buttressed by the finding of a compaction of the unfolded barstar by addition of KCl at low urea concentrations.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号