首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fang M  Macova A  Hanson KL  Kos J  Palmer DR 《Biochemistry》2011,50(40):8712-8721
MenD catalyzes the thiamin diphosphate-dependent decarboxylative carboligation of α-ketoglutarate and isochorismate. The enzyme is essential for menaquinone biosynthesis in many bacteria and has been proposed to be an antibiotic target. The kinetic mechanism of this enzyme has not previously been demonstrated because of the limitations of the UV-based kinetic assay. We have reported the synthesis of an isochorismate analogue that acts as a substrate for MenD. The apparent weaker binding of this analogue is advantageous in that it allows accurate kinetic experiments at substrate concentrations near K(m). Using this substrate in concert with the dead-end inhibitor methyl succinylphosphonate, an analogue of α-ketoglutarate, we show that MenD follows a ping-pong kinetic mechanism. Using both the natural and synthetic substrates, we have measured the effects of 12 mutations of residues at the active site. The results give experimental support to previous models and hypotheses and allow observations unavailable using only the natural substrate.  相似文献   

2.
The thiamine diphosphate (ThDP) and metal-ion-dependent enzyme 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase, or MenD, catalyze the Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate to release 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate and carbon dioxide. This reaction represents the first committed step for biosynthesis of menaquinone, or vitamin K2, a key cofactor for electron transport in bacteria and a metabolite for posttranslational modification of proteins in mammals. The medium-resolution structure of MenD from Escherichia coli (EcMenD) in complex with its cofactor and Mn2+ has been determined in two related hexagonal crystal forms. The subunit displays the typical three-domain structure observed for ThDP-dependent enzymes in which two of the domains bind and force the cofactor into a configuration that supports formation of a reactive ylide. The structures reveal a stable dimer-of-dimers association in agreement with gel filtration and analytical ultracentrifugation studies and confirm the classification of MenD in the pyruvate oxidase family of ThDP-dependent enzymes. The active site, created by contributions from a pair of subunits, is highly basic with a pronounced hydrophobic patch. These features, formed by highly conserved amino acids, match well to the chemical properties of the substrates. A model of the covalent intermediate formed after reaction with the first substrate alpha-ketoglutarate and with the second substrate isochorismate positioned to accept nucleophilic attack has been prepared. This, in addition to structural and sequence comparisons with putative MenD orthologues, provides insight into the specificity and reactivity of MenD and allows a two-stage reaction mechanism to be proposed.  相似文献   

3.
Bhasin M  Billinsky JL  Palmer DR 《Biochemistry》2003,42(46):13496-13504
(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase, or MenD, catalyzes the thiamin diphosphate- (ThDP-) dependent decarboxylation of 2-oxoglutarate, the subsequent addition of the resulting succinyl-ThDP moiety to isochorismate, and the delta-elimination of pyruvate to yield SHCHC, pyruvate, and carbon dioxide. The enzyme is part of a superfamily of ThDP-dependent 2-oxo acid decarboxylases that includes pyruvate decarboxylase, benzoylformate decarboxylase, and acetohydroxy acid synthase, among others. However, this is the only enzyme known to catalyze a Stetter-like 1,4-addition of a ThDP adduct to the beta-carbon of an unsaturated carboxylate. Herein we report properties of the MenD protein from Escherichia coli, including the results of the first steady-state kinetic studies of the SHCHC synthase reaction. The protein is a dimer and shows cooperativity with respect to both substrates. The enzyme prefers divalent manganese as its metal ion cofactor and shows no dependence on FAD. MenD, required for biosynthesis of menaquinone and phylloquinone, is found in the genomes of a wide range of bacteria, as well as that of the archaeon Halobacterium sp. NRC-1 and the eukaryote Arabidopsis thaliana. Sequence alignments with other members of the superfamily are used to predict amino acid residues likely to be important in the binding and activation of ThDP. A site-directed mutant that replaces the conserved glutamic acid residue (E55), predicted to interact with N1' of the aminopyrimidine ring, with glutamine was generated, with catastrophic results for catalysis. There is no evidence for the release of succinate semialdehyde as a product; therefore, EC 4.1.1.71 should not be used for this enzyme.  相似文献   

4.
MenD as a versatile catalyst for asymmetric synthesis   总被引:1,自引:0,他引:1  
The thiamine diphosphate (ThDP)-dependent enzyme 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (MenD) from Escherichia coli K12, formerly known as SHCHC-synthase, catalyses the decarboxylation of α-ketoglutarate and the subsequent addition of the resulting succinyl-THDP to isochorismate. Here, the enzyme is tested for unphysiologial C–C bond-forming reactions.Condensation of α-ketoglutarate after decarboxylation to a broad range of aldehydes gave α-hydroxyketones with isolated yields from 26 to 87% and 94 to 98% ee for addition to aromatic aldehydes. MenD accepts a wide range of aldehydes as acceptor substrates to produce chiral α-hydroxyketones with conserved regioselectivity where the activated succinylsemialdehyde serves selectively as the donor. Regioselectivity is inverted only for condensation of α-ketoglutarate with pyruvate (activated acetaldehyde) as donor. Besides α-ketoglutarate, pyruvate and oxalacetate are accepted as donors in combination with benzaldehyde and 2-fluorobenzaldehyde as acceptors, however with decreased activity of C–C bond formation.The physiological 1,4-addition of α-ketoglutarate to isochorismate was investigated for acceptor substrate variability. (2S,3S)-2,3-Dihydroxy-2,3-dihydrobenzoate (2,3-CHD), which lacks the pyruvyl found in isochorismate, is converted to (5S,6S)-2-succinyl-5,6-dihydroxycyclohex-2-enecarboxylate. In contrast to the addition to carbonyls, the active site of MenD does appear to impose specific constraints on the acceptor substrate for 1,4-addition with α,β-unsaturated carboxylic acids.  相似文献   

5.
Jiang M  Cao Y  Guo ZF  Chen M  Chen X  Guo Z 《Biochemistry》2007,46(38):10979-10989
Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that the genuine MenD product is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid (SEPHCHC), rather than SHCHC. This is supported by the following findings: (i) isochorismate consumption and SHCHC formation are not synchronized in the enzymic reaction, (ii) the rate of SHCHC formation is independent of the enzyme concentration, (iii) SHCHC is not formed in weakly acidic or neutral solutions in which the isochorismate substrate is readily consumed by MenD, and (iv) the MenD turnover product, formed under conditions disabling SHCHC formation, possesses spectroscopic characteristics consistent with the structure of SEPHCHC and spontaneously undergoes 2,5-elimination to form SHCHC and pyruvate in weakly basic solutions. Two properties of the intermediate, ultraviolet transparency and chemical instability, provide a rationale for the fact that SHCHC has been consistently mistaken as the MenD product. In accordance with these findings, MenD was rediscovered to be a highly efficient enzyme with a high second-order rate constant and should be renamed SEPHCHC synthase. Intriguingly, the enzymatic activity responsible for conversion of SEPHCHC into SHCHC appears not to associate with any of the known enzymes in menaquinone biosynthesis but is present in the crude extract of E. coli K12, suggesting that a genuine SHCHC synthase remains to be identified to fully elucidate the ubiquitous biosynthetic pathway.  相似文献   

6.
Fan J  Liu Q  Hao Q  Teng M  Niu L 《Journal of bacteriology》2007,189(9):3573-3580
Uroporphyrinogen decarboxylase (UROD) is a branch point enzyme in the biosynthesis of the tetrapyrroles. It catalyzes the decarboxylation of four acetate groups of uroporphyrinogen III to yield coproporphyrinogen III, leading to heme and chlorophyll biosynthesis. UROD is a special type of nonoxidative decarboxylase, since no cofactor is essential for catalysis. In this work, the first crystal structure of a bacterial UROD, Bacillus subtilis UROD (UROD(Bs)), has been determined at a 2.3 A resolution. The biological unit of UROD(Bs) was determined by dynamic light scattering measurements to be a homodimer in solution. There are four molecules in the crystallographic asymmetric unit, corresponding to two homodimers. Structural comparison of UROD(Bs) with eukaryotic URODs reveals a variation of two loops, which possibly affect the binding of substrates and release of products. Structural comparison with the human UROD-coproporphyrinogen III complex discloses a similar active cleft, with five invariant polar residues (Arg29, Arg33, Asp78, Tyr154, and His322) and three invariant hydrophobic residues (Ile79, Phe144, and Phe207), in UROD(Bs). Among them, Asp78 may interact with the pyrrole NH groups of the substrate, and Arg29 is a candidate for positioning the acetate groups of the substrate. Both residues may also play catalytic roles.  相似文献   

7.
The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511). This report found that Ca(2+) bound only at the active site, indicating that there is likely no surface allosteric site. (45)Ca(2+) bound to PCK with a K(d) of 85 micro M and n of 0.92. Glu508Gln Glu511Gln mutant PCK had normal activation by Ca(2+). Separate roles of Mg(2+), which binds the nucleotide, and Ca(2+), which bridges the nucleotide and the anionic substrate, are implied, and the catalytic mechanism of PCK is better explained by studies of the Ca(2+)-bound structure. Partial trypsin digestion abolishes Ca(2+) activation (desensitizes PCK). N-terminal sequencing identified sensitive sites, i.e., Arg2 and Arg396. Arg2Ser, Arg396Ser, and Arg2Ser Arg396Ser (double mutant) PCKs altered the kinetics of desensitization. C-terminal residues 397 to 540 were removed by trypsin when wild-type PCK was completely desensitized. Phe409 and Phe413 interact with residues in the Ca(2+) binding site, probably stabilizing the C terminus. Phe409Ala, DeltaPhe409, Phe413Ala, Delta397-521 (deletion of residues 397 to 521), Arg396(TAA) (stop codon), and Asp269Glu (Ca(2+) site) mutations failed to desensitize PCK and, with the exception of Phe409Ala, appeared to have defects in the synthesis or assembly of PCK, suggesting that the structure of the C-terminal domain is important in these processes.  相似文献   

8.
Retinoid X receptors (RXRα, β and γ) are recently known to be cancer chemotherapies targets. The ligand binding domains of RXRs have been crystallized, but the information of RXRγ ligand binding site is not yet available due to the lack of liganded complex. A thorough understanding of the ligand binding sites is essential to study RXRs and may result in cancer therapeutic breakthrough. Thus we aimed to study the RXRγ ligand binding site and find out the differences between the three subtypes. Alignment and molecular simulation were carried out for identifying the RXRγ ligand binding site, characterizing the RXRγ ligand binding mode and comparing the three RXRs. The result has indicated that the RXRγ ligand binding site is defined by helices H5, H10, β-sheet s1 and the end loop. Besides hydrophobic interactions, the ligand 9-cis retinoic acid interacts with RXRγ through a hydrogen bond with Ala106, a salt bridge with Arg95 and the π-π interactions with Phe217 and Phe218. The binding modes exhibit some similarities among RXRs, such as the interactions with Arg95 and Ala106. Nonetheless, owing to the absence of Ile47, Cys48, Ala50, Ala51 and residues 225∼237 in the active site, the binding pocket in RXRγ is two times larger than those of RXRα and RXRβ. Meanwhile, spatial effects of Trp84, Arg95, Ala106, Phe217 and Phe218 help to create a differently shaped binding pocket as compared to those of RXRα and RXRβ. Consequently, the ligand in RXRγ undergoes a “standing” posing which is distinct from the other two RXRs.  相似文献   

9.
Here we describe in detail the crystal structures of the Vitamin K2 synthesis protein MenD, from Escherichia coli, in complex with thiamine diphosphate (ThDP) and oxoglutarate, and the effects of cofactor and substrate on its structural stability. This is the first reported structure of MenD in complex with oxoglutarate. The residues Gly472 to Phe488 of the active site region are either disordered, or in an open conformation in the MenD oxoglutarate complex structure, but adopt a closed conformation in the MenD ThDP complex structure. Biospecific-interaction analysis using surface plasmon resonance (SPR) technology reveals an affinity for ThDP and oxoglutarate in the nanomolar range. Biochemical and structural analysis confirmed that MenD is highly dependent on ThDP for its structural stability. Our structural results combined with the biochemical assay reveal novel features of the enzyme that could be utilized in a program of rational structure-based drug design, as well as in helping to enhance our knowledge of the menaquinone synthesis pathway in greater detail.  相似文献   

10.
General acid catalysis in protein tyrosine phosphatases (PTPases) is accomplished by a conserved Asp residue, which is brought into position for catalysis by movement of a flexible loop that occurs upon binding of substrate. With the PTPase from Yersinia, we have examined the effect on general acid catalysis caused by mutations to two conserved residues that are integral to this conformation change. Residue Trp354 is at a hinge of the loop, and Arg409 forms hydrogen bonding and ionic interactions with the phosphoryl group of substrates. Trp354 was mutated to Phe and to Ala, and residue Arg409 was mutated to Lys and to Ala. The four mutant enzymes were studied using steady state kinetics and heavy-atom isotope effects with the substrate p-nitrophenyl phosphate. The data indicate that mutation of the hinge residue Trp354 to Ala completely disables general acid catalysis. In the Phe mutant, general acid catalysis is partially effective, but the proton is only partially transferred in the transition state, in contrast to the native enzyme where proton transfer to the leaving group is virtually complete. Mutation of Arg409 to Lys has a minimal effect on the K(m), while this parameter is increased 30-fold in the Ala mutant. The k(cat) values for R409K and for R409A are about 4 orders of magnitude lower than that for the native enzyme. General acid catalysis is rendered inoperative by the Lys mutation, but partial proton transfer during catalysis still occurs in the Ala mutant. Structural explanations for the differential effects of these mutations on movement of the flexible loop that enables general acid catalysis are presented.  相似文献   

11.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

12.
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (SceADH) binds NAD+ and NADH less tightly and turns over substrates more rapidly than does horse (Equus caballus) liver alcohol dehydrogenase E isoenzyme (EcaADH), and neither enzyme uses NADP efficiently. Amino acid residues in the proposed adenylate binding pocket of SceADH were substituted in attempts to improve affinity for coenzymes or reactivity with NADP. Substitutions in SceADH (Gly202Ile or Ser246Ile) with the corresponding residues in the adenine binding site of the homologous EcaADH have modest effects on coenzyme binding and other kinetic constants, but the Ser246Ile substitution decreases turnover numbers by 350-fold. The Ser176Phe substitution (also near adenine site) significantly decreases affinity for coenzymes and turnover numbers. In the consensus nucleotide-binding betaalphabeta fold sequence, SceADH has two alanine residues (177-GAAGGLG-183) instead of the Leu200 in EcaADH (199-GLGGVG-204); the Ala178-Ala179 to Leu substitution significantly decreases affinity for coenzymes and turnover numbers. Some NADP-dependent enzymes have an Ala corresponding to Gly183 in SceADH; the Gly183Ala substitution significantly decreases affinity for coenzymes and turnover numbers. NADP-dependent enzymes usually have a neutral residue instead of the Asp (Asp201 in SceADH) that interacts with the hydroxyl groups of the adenosine ribose, along with a basic residue (at position 202 or 203) to stabilize the 2'-phosphate of NADP. The Gly203Arg change in SceADH does not significantly affect the kinetics. The Gly183Ala or Gly203Arg substitutions do not enable SceADH to use NADP+ as coenzyme. SceADH with the single Asp201Gly or double Asp201Gly:Gly203Arg substitutions have similar, low activity with NADP+. The results suggest that several of the amino acid residues participate in coenzyme binding and that conversion of specificity for coenzyme requires multiple substitutions.  相似文献   

13.
Anbarasu A  Anand S  Rao S 《Bio Systems》2007,90(3):792-801
We have investigated the roles played by C-H...O=C interactions in RNA binding proteins. There was an average of 78 CH...O=C interactions per protein and also there was an average of one significant CH...O=C interactions for every 6 residues in the 59 RNA binding proteins studied. Main chain-Main chain (MM) CH...O=C interactions are the predominant type of interactions in RNA binding proteins. The donor atom contribution to CH...O=C interactions was mainly from aliphatic residues. The acceptor atom contribution for MM CH...O=C interactions was mainly from Val, Phe, Leu, Ile, Arg and Ala. The secondary structure preference analysis of CH...O=C interacting residues showed that, Arg, Gln, Glu and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Ile, Leu, Lys, Met, Phe, Trp and Val preferred to be in strand conformation. Most of the CH...O=C interacting polar amino acid residues were solvent exposed while, majority of the CH...O=C interacting non polar residues were excluded from the solvent. Long and medium-range CH...O=C interactions are the predominant type of interactions in RNA binding proteins. More than 50% of CH...O=C interacting residues had a higher conservation score. Significant percentage of CH...O=C interacting residues had one or more stabilization centers. Sixty-six percent of the theoretically predicted stabilizing residues were also involved in CH...O=C interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

14.
Substrate specificity of platypus venom L-to-D-peptide isomerase   总被引:1,自引:0,他引:1  
The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.  相似文献   

15.
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.  相似文献   

16.
COX-2 is a well-known drug target in inflammatory disorders. COX-1/COX-2 selectivity of NSAIDs is crucial in assessing the gastrointestinal side effects associated with COX-1 inhibition. Celecoxib, rofecoxib, and valdecoxib are well-known specific COX-2 inhibiting drugs. Recently, polmacoxib, a COX-2/CA-II dual inhibitor has been approved by the Korean FDA. These COXIBs have similar structure with diverse activity range. Present study focuses on unraveling the mechanism behind the 10-fold difference in the activities of these sulfonamide-containing COXIBs. In order to obtain insights into their binding with COX-2 at molecular level, molecular dynamics simulations studies, and MM-PBSA approaches were employed. Further, per-residue decomposition of these energies led to the identification of crucial amino acids and interactions contributing to the differential binding of COXIBs. The results clearly indicated that Leu338, Ser339, Arg499, Ile503, Phe504, Val509, and Ser516 (Leu352, Ser353, Arg513, Ile517, Phe518, Val523, and Ser530 in PGHS-1 numbering) were imperative in determining the activity of these COXIBs. The binding energies and energy contribution of various residues were similar in all the three simulations. The results suggest that hydrogen bond interaction between the hydroxyl group of Ser516 and five-membered ring of diarylheterocycles augments the affinity in COXIBs. The SAR of the inhibitors studied and the per-residue energy decomposition values suggested the importance of Ser516. Additionally, the positive binding energy obtained with Arg106 explains the binding of COXIBs in hydrophobic channel deep in the COX-2 active site. The findings of the present work would aid in the development of potent COX-2 inhibitors.  相似文献   

17.
We isolated RNAs by selection–amplification, selecting for affinity to Phe–Sepharose and elution with free l-phenylalanine. Constant sequences did not contain Phe condons or anticodons, to avoid any possible confounding influence on initially randomized sequences. We examined the eight most frequent Phe-binding RNAs for inclusion of coding triplets. Binding sites were defined by nucleotide conservation, protection, and interference data. Together these RNAs comprise 70% of the 105 sequenced RNAs. The K D for the strongest sites is ≈50 μM free amino acid, with strong stereoselectivity. One site strongly distinguishes free Phe from Trp and Tyr, a specificity not observed previously. In these eight Phe-binding RNAs, Phe codons are not significantly associated with Phe binding sites. However, among 21 characterized RNAs binding Phe, Tyr, Arg, and Ile, containing 1342 total nucleotides, codons are 2.7-fold more frequent within binding sites than in surrounding sequences in the same molecules. If triplets were not specifically related to binding sites, the probability of this distribution would be 4.8 × 10−11. Therefore, triplet concentration within amino acid binding sites taken together is highly likely. In binding sites for Arg, Tyr, and Ile cognate codons are overrepresented. Thus Arg, Tyr, and Ile may be amino acids whose codons were assigned during an era of direct RNA–amino acid affinity. In contrast, Phe codons arguably were assigned by another criterion, perhaps during later code evolution.  相似文献   

18.
Accessible surfaces of the HSA molecule in N-, F- and B-forms were studied in the present work by tritium labelling method which allowed to obtain detailed information on N-F- and N-B-transitions. In was shown that the F-form in comparison top the N-form is characterized by more high accessibility of Ser, Ala, Ile, Tyr, Phe, His, Arg, Pro, Val and Phe residues and in the B-form Tyr, Ser, Arg, Gly, Ile, Phe and Pro residues turn to be highly accessible. Full accessible surfaces of protein molecule at N-F- and N-B-transitions increase respectively from 39,000 to 70,400 A2 and from 39,000 to 47,000 A2. Basing on the prevailing increase of hydrophobic residues accessibility it is supposed that the molecule expansion testifies the separation of the subunits forming the molecule.  相似文献   

19.
The crystallographic structures of the adducts of salicylate 1,2-dioxygenase (SDO) with substrates salicylate, gentisate and 1-hydroxy-2-naphthoate, obtained under anaerobic conditions, have been solved and analyzed. This ring fission dioxygenase from the naphthalenesulfonate-degrading bacterium Pseudaminobacter salicylatoxidans BN12, is a homo-tetrameric class III ring-cleaving dioxygenase containing a catalytic Fe(II) ion coordinated by three histidine residues. SDO is markedly different from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases, belonging to the same class, because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate. The crystal structures of the anaerobic complexes of the SDO reveal the mode of binding of the substrates into the active site and unveil the residues which are important for the correct positioning of the substrate molecules. Upon binding of the substrates the active site of SDO undergoes a series of conformational changes: in particular Arg127, His162, and Arg83 move to make hydrogen bond interactions with the carboxyl group of the substrate molecules. Unpredicted concerted displacements upon substrate binding are observed for the loops composed of residues 40-43, 75-85, and 192-198 where several aminoacidic residues, such as Leu42, Arg79, Arg83, and Asp194, contribute to the closing of the active site together with the amino-terminal tail (residues 2-15). Differences in substrate specificity are controlled by several residues located in the upper part of the substrate binding cavity like Met46, Ala85, Trp104, and Phe189, although we cannot exclude that the kinetic differences observed could also be generated by concerted conformational changes resulting from amino-acid mutations far from the active site.  相似文献   

20.
The cofactor-binding site of the NAD+-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2′- and 3′-hydroxyl groups of the adenosyl ribose ring of NAD+ and repels the 2′-phosphate moiety of NADP+. If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD+ is altered and rendered the enzyme capable of using NADP+. This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2′-phosphate of NADP+. Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP+. The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP+. Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a “closed” cofactor binding site. The cofactor specificity was shifted even further in favor of NADP+, as the mutant ALDH3H1E149T/V178R/I200V uses NADP+ with almost 7-fold higher catalytic efficiency compared to NAD+. Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号