首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.  相似文献   

2.
Trehalose is the primary organic solute in Rubrobacter xylanophilus under all conditions tested, including those for optimal growth. We detected genes of four different pathways for trehalose synthesis in the genome of this organism, namely, the trehalose-6-phosphate synthase (Tps)/trehalose-6-phosphate phosphatase (Tpp), TreS, TreY/TreZ, and TreT pathways. Moreover, R. xylanophilus is the only known member of the phylum Actinobacteria to harbor TreT. The Tps sequence is typically bacterial, but the Tpp sequence is closely related to eukaryotic counterparts. Both the Tps/Tpp and the TreT pathways were active in vivo, while the TreS and the TreY/TreZ pathways were not active under the growth conditions tested and appear not to contribute to the levels of trehalose observed. The genes from the active pathways were functionally expressed in Escherichia coli, and Tps was found to be highly specific for GDP-glucose, a rare feature among these enzymes. The trehalose-6-phosphate formed was specifically dephosphorylated to trehalose by Tpp. The recombinant TreT synthesized trehalose from different nucleoside diphosphate-glucose donors and glucose, but the activity in R. xylanophilus cell extracts was specific for ADP-glucose. The TreT could also catalyze trehalose hydrolysis in the presence of ADP, but with a very high Km. Here, we functionally characterize two systems for the synthesis of trehalose in R. xylanophilus, a representative of an ancient lineage of the actinobacteria, and discuss a possible scenario for the exceptional occurrence of treT in this extremophilic bacterium.  相似文献   

3.
In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis--the unidirectional TreT pathway--and discuss its physiological role as well as its phylogenetic distribution.  相似文献   

4.
New insights on trehalose: a multifunctional molecule   总被引:57,自引:0,他引:57  
Trehalose is a nonreducing disaccharide in which the two glucose units are linked in an alpha,alpha-1,1-glycosidic linkage. This sugar is present in a wide variety of organisms, including bacteria, yeast, fungi, insects, invertebrates, and lower and higher plants, where it may serve as a source of energy and carbon. In yeast and plants, it may also serve as a signaling molecule to direct or control certain metabolic pathways or even to affect growth. In addition, it has been shown that trehalose can protect proteins and cellular membranes from inactivation or denaturation caused by a variety of stress conditions, including desiccation, dehydration, heat, cold, and oxidation. Finally, in mycobacteria and corynebacteria, trehalose is an integral component of various glycolipids that are important cell wall structures. There are now at least three different pathways described for the biosynthesis of trehalose. The best known and most widely distributed pathway involves the transfer of glucose from UDP-glucose (or GDP-glucose in some cases) to glucose 6-phosphate to form trehalose-6-phosphate and UDP. This reaction is catalyzed by the trehalose-P synthase (TPS here, or OtsA in Escherichia coli ). Organisms that use this pathway usually also have a trehalose-P phosphatase (TPP here, or OtsB in E. coli) that converts the trehalose-P to free trehalose. A second pathway that has been reported in a few unusual bacteria involves the intramolecular rearrangement of maltose (glucosyl-alpha1,4-glucopyranoside) to convert the 1,4-linkage to the 1,1-bond of trehalose. This reaction is catalyzed by the enzyme called trehalose synthase and gives rise to free trehalose as the initial product. A third pathway involves several different enzymes, the first of which rearranges the glucose at the reducing end of a glycogen chain to convert the alpha1,4-linkage to an alpha,alpha1,1-bond. A second enzyme then releases the trehalose disaccharide from the reducing end of the glycogen molecule. Finally, in mushrooms there is a trehalose phosphorylase that catalyzes the phosphorolysis of trehalose to produce glucose-1-phosphate and glucose. This reaction is reversible in vitro and could theoretically give rise to trehalose from glucose-1-P and glucose. Another important enzyme in trehalose metabolism is trehalase (T), which may be involved in energy metabolism and also have a regulatory role in controlling the levels of trehalose in cells. This enzyme may be important in lowering trehalose concentrations once the stress is alleviated. Recent studies in yeast indicate that the enzymes involved in trehalose synthesis (TPS, TPP) exist together in a complex that is highly regulated at the activity level as well as at the genetic level.  相似文献   

5.
The gene cluster in Thermococcus litoralis encoding a multicomponent and binding protein-dependent ABC transporter for trehalose and maltose contains an open reading frame of unknown function. We cloned this gene (now called treT), expressed it in Escherichia coli, purified the encoded protein, and identified it as an enzyme forming trehalose and ADP from ADP-glucose and glucose. The enzyme can also use UDP- and GDP-glucose but with less efficiency. The reaction is reversible, and ADP-glucose plus glucose can also be formed from trehalose and ADP. The rate of reaction and the equilibrium favor the formation of trehalose. At 90 degrees C, the optimal temperature for the enzymatic reaction, the half-maximal concentration of ADP-glucose at saturating glucose concentrations is 1.14 mm and the V(max) is 160 units/mg protein. In the reverse reaction, the half-maximal concentration of trehalose at saturating ADP concentrations is 11.5 mm and the V(max) was estimated to be 17 units/mg protein. Under non-denaturating in vitro conditions the enzyme behaves as a dimer of identical subunits of 48 kDa. As the transporter encoded in the same gene cluster, TreT is induced by trehalose and maltose in the growth medium.  相似文献   

6.
Koh S  Kim J  Shin HJ  Lee D  Bae J  Kim D  Lee DS 《Carbohydrate research》2003,338(12):1339-1343
This paper questions what types of molecular transformation are involved in the conversion of maltose to trehalose by trehalose synthase from Thermus caldophilus GK24. The reverse reaction pathway has been examined with the aid of alpha,alpha-(2,4,6,6',2',4',6",6"'-(2)H(8))trehalose (1). The mass data of the isolated reaction products clearly indicate that deuterated glucose is confined only to substrate molecules, and thus the reversible enzymatic conversion of trehalose into maltose proceeds through an intramolecular pathway.  相似文献   

7.
Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.  相似文献   

8.
A dual‐enzyme process aiming at facilitating the purification of trehalose from maltose is reported in this study. Enzymatic conversion of maltose to trehalose usually leads to the presence of significant amount of glucose, by‐product of the reaction, and unreacted maltose. To facilitate the separation of trehalose from glucose and unreacted maltose, sequential conversion of maltose to glucose and glucose to gluconic acid under the catalysis of glucoamylase and glucose oxidase, respectively, is studied. This study focuses on the hydrolysis of maltose with immobilized glucoamylase on Eupergit® C and CM Sepharose. CM Sepharose exhibited a higher protein adsorption capacity, 49.35 ± 1.43 mg/g, and was thus selected as carrier for the immobilization of glucoamylase. The optimal reaction temperature and reaction pH of the immobilized glucoamylase for maltose hydrolysis were identified as 40°C and 4.0, respectively. Under such conditions, the unreacted maltose in the product stream of trehalose synthase‐catalyzed reaction was completely converted to glucose within 35 min, without detectable trehalose degradation. The conversion of maltose to glucose could be maintained at 0.92 even after 80 cycles in repeated‐batch operations. It was also demonstrated that glucose thus generated could be readily oxidized into gluconic acid, which can be easily separated from trehalose. We thus believe the proposed process of maltose hydrolysis with immobilized glucoamylase, in conjunction with trehalose synthase‐catalyzed isomerization and glucose oxidase‐catalyzed oxidation, is promising for the production and purification of trehalose on industrial scales. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

9.
Trehalose-6-phosphate synthase (TPS) is one of the key subunits of the trehalose synthase complex, responsible for synthesis of trehalose in Saccharomyces cerevisiae. Different laboratories have tried to purify TPS, but have been unable to separate it from the complex. During the present study, active TPS has been isolated from the trehalose synthase complex as a free 59kDa protein. A 158 fold purification was achieved with over 84% recovery of active TPS. N-terminal sequence confirmed the 59kDa protein to be TPS. It was revealed to be a highly hydrophobic protein by amino acid analysis data. Activity of TPS was identified to be governed by association–dissociation of protein components. TPS activity of the isolated enzyme was highly unstable due to dissociation of the protein from the complex. Aggregation of active molecules was also seen to enhance as well as stabilize enzyme activity. This aggregation was concentration dependent and activity was seen to be enhanced by increasing the number of active molecules and fell with dilution. The association of the active complex was also found to be governed by ionic interactions.  相似文献   

10.
A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225 bp at the 5′-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.  相似文献   

11.

Background

Enzymes involved in trehalose metabolism have been proposed as potential targets for new antifungals. To analyse this proposal, the susceptibility to Amphotericin B (AmB) of the C. albicans trehalose-deficient mutant tps1Δ/tps1Δ, was examined.

Methods

Determination of endogenous trehalose and antioxidant enzymatic activities as well as RT-PCR analysis in cells subjected to AmB treatments was performed.

Results

Exponential tps1Δ null cultures showed high degree of cell killing upon exposure to increasing AmB doses respect to CAI.4 parental strain. Reintroduction of the TPS1 gene restored the percentage of cell viability. AmB induced significant synthesis of endogenous trehalose in parental cells, due to the transitory accumulation of TPS1 mRNA or to the moderate activation of trehalose synthase (Tps1p) with the simultaneous deactivation of neutral trehalase (Ntc1p). Since tps1Δ/tps1Δ mutant cells are highly susceptible to acute oxidative stress, the putative antioxidant response to AmB was also measured. A conspicuous activation of catalase and glutathione reductase (GR), but not of superoxide dismutase (SOD), was observed when the two cell types were exposed to high concentrations of AmB (5 μg/ml). However, no significant differences were detected between parental and tps1Δ null strains as regards the level of activities.

Conclusions

The protective intracellular accumulation of trehalose together with the induction of antioxidant enzymatic defences are worthy mechanisms involved in the resistance of C. albicans to the fungicidal action of AmB.

General significance

The potential usefulness of trehalose synthesis proteins as an interesting antifungal target is reinforced. More importantly, AmB elicits a complex defensive response in C. albicans.  相似文献   

12.
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.  相似文献   

13.
The current study was undertaken to correlate post‐translational protein modification by methylation with the functionality of enzymes involved in trehalose metabolism in Saccharomyces cerevisiae. Trehalose is an economically important disaccharide providing protection against various kinds of stresses. It also acts as a source of cellular energy by storing glucose. Methyl group donor S‐adenosyl L ‐methionine (AdoMet) and methylation inhibitor‐oxidized adenosine (AdOx) were used for the methylation study. AdoMet delayed initial growth of the cells but the overall growth rate remained same suggesting its interference in G1 phase of the cell cycle. Metabolic‐altered enzyme activities of acid trehalase (AT), neutral trehalase (NT), and trehalose‐6‐phosphate synthase (TPS) were observed when treated with AdOx and AdoMet separately. A positive effect of methylation was observed in TPS, hence, it was purified in three different conditions, using AdoMet, AdOx, and control. Differences in mobility of methylated, methylation‐inhibited, and control TPS during acidic native gel electrophoresis confirmed the occurrence of induced methylation. Hydrolysis under alkaline pH conditions revealed that methylation of TPS was different than O‐methylation. MALDI‐TOF analysis of trypsin‐digested samples of purified methylated, methylation‐inhibited, and control TPS revealed that an increase of 18 Da mass in methylated peptides suggesting the introduction of methyl ester in TPS. Results of amino acid analysis corroborated the presence of methyl cysteine. The data presented here strongly suggests that trehalose production was enhanced due to methylation of TPS arising from carboxymethylation of cysteine residues. J. Cell. Physiol. 226: 158–164, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the synthesis of endogenous trehalose is catalyzed by a trehalose synthase complex, TPS, and its hydrolysis relies on a cytosolic/neutral trehalase encoded by NTH1. In this work, we showed that NTH2, a paralog of NTH1, encodes a functional trehalase that is implicated in trehalose mobilization. Yeast is also endowed with an acid trehalase encoded by ATH1 and an H+/trehalose transporter encoded by AGT1, which can together sustain assimilation of exogenous trehalose. We showed that a tps1 mutant defective in the TPS catalytic subunit cultivated on trehalose, or on a dual source of carbon made of galactose and trehalose, accumulated high levels of intracellular trehalose by its Agt1p-mediated transport. The accumulated disaccharide was mobilized as soon as cells entered the stationary phase by a process requiring a coupling between its export and immediate extracellular hydrolysis by Ath1p. Compared to what is seen for classical growth conditions on glucose, this mobilization was rather unique, since it took place prior to that of glycogen, which was postponed until the late stationary phase. However, when the Ath1p-dependent mobilization of trehalose identified in this study was impaired, glycogen was mobilized earlier and faster, indicating a fine-tuning control in carbon storage management during periods of carbon and energy restriction.  相似文献   

15.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

16.
The aim of this study was to isolate and characterize a trehalose‐synthesizing enzyme from Euglena gracilis Klebs. After purification by anion exchange chromatography, gel filtration, isoelectric focusing, and native electrophoresis, trehalose‐6‐phosphate synthase (TPS, EC 2.4.1.15) and trehalose‐6‐phosphate phosphatase (TPP, EC 3.1.3.12) activities could not be separated. Consequently, a TPS/TPP enzyme complex of about 250 kDa was suggested as responsible for trehalose synthesis in E. gracilis. The TPS activity was shown to be highly specific for glucose‐6‐P, and UDP‐Glc was the preferred glucose donor, but GDP‐Glc and CDP‐Glc could also act as TPS substrates. The TPP activity was highly specific for trehalose‐6‐P. In vitro phosphorylation assays revealed rapid decreases in TPS and TPP activities. These changes corresponded to variations in the elution profile of gel filtration chromatography after the phosphorylation treatment. Taken together, these results suggest that the proposed TPS/TPP complex might be regulated through a protein phosphorylation/dephosphorylation‐mediated mechanism that could affect the association state of the complex. Such a regulatory mechanism might lead to a rapid change in trehalose synthesis in response to variations in environmental conditions.  相似文献   

17.
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose.  相似文献   

18.
19.
The crystal transformation of dihydrate trehalose to anhydrous trehalose was investigated using ethanol and a new type of crystal particle with porous structure could be obtained. The specific surface area of the anhydrous crystal transformed at 50 degrees C was 3.3 m(2)/g, with a median pore diameter of 0.21 microm, and void volume of 0.22 mL/g. The crystal transformation was monitored by measuring the crystal moisture content. The crystal transformation rates could be correlated with the Avrami equation, using the mechanism parameter n=11.5, suggesting that the change of surface area occurred during crystal transformation from dehydrate to anhydrous trehalose. The apparent activation energy of the crystal transformation was 132 kJ/mol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号