首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Designed ankyrin repeat proteins (DARPins) that specifically bind to almost any target can be obtained by ribosome display or phage display from combinatorial libraries. Although DARPins are already very stable molecules, molecular dynamics simulations, equilibrium denaturation experiments, structural studies, and recent NMR experiments suggested that the unfolding of the original C-terminal capping repeat (C-cap), taken from a natural ankyrin repeat protein, limits the stability of the initial DARPin design. Several point mutations had been introduced to optimize the C-cap and were shown to indeed further increase the stability of DARPins. We now determined crystal structures of DARPins with one or three full-consensus internal repeats (NI1C or NI3C) between an N-terminal capping repeat and mutants of the C-cap. An NI1C mutant, in which the C-cap was only extended by three additional helix-forming residues, showed no structural change but reduced B-factors in the C-cap. An NI3C C-cap mutant carrying five additional mutations in the interface to the preceding repeat, previously designed by using the consensus sequence as a guide, showed a rigid-body movement of the C-cap towards the internal repeat. This movement results in an increased buried surface area and a superior surface complementarity and explains the improved stability in equilibrium unfolding, compared to the original C-cap. A C-cap mutant with three additional mutations introducing suitably spaced charged residues did not show formation of salt bridges, explaining why its stability was not increased further. These structural studies underline the importance of repeat coupling for stability and help in the further design of this protein family.  相似文献   

2.
Full-consensus designed ankyrin repeat proteins (DARPins), in which randomized positions of the previously described DARPin library have been fixed, are characterized. They show exceptionally high thermodynamic stabilities, even when compared to members of consensus DARPin libraries and even more so when compared to naturally occurring ankyrin repeat proteins. We determined the crystal structure of a full-consensus DARPin, containing an N-capping repeat, three identical internal repeats and a C-capping repeat at 2.05 Å resolution, and compared its structure with that of the related DARPin library members E3_5 and E3_19. This structural comparison suggests that primarily salt bridges on the surface, which arrange in a network with almost crystal-like regularity, increase thermostability in the full-consensus NI3C DARPin to make it resistant to boiling. In the crystal structure, three sulfate ions complement this network. Thermal denaturation experiments in guanidine hydrochloride directly indicate a contribution of sulfate binding to the stability, providing further evidence for the stabilizing effect of surface-exposed electrostatic interactions and regular charge networks. The charged residues at the place of randomized residues in the DARPin libraries were selected based on sequence statistics and suggested that the charge interaction network is a hidden design feature of this protein family. Ankyrins can therefore use design principles from proteins of thermophilic organisms and reach at least similar stabilities.  相似文献   

3.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.  相似文献   

4.
Multiple molecular dynamics simulations with explicit solvent at room temperature and at 400 K were carried out to characterize designed ankyrin repeat (AR) proteins with full-consensus repeats. Using proteins with one to five repeats, the stability of the native structure was found to increase with the number of repeats. The C-terminal capping repeat, originating from the natural guanine-adenine-binding protein, was observed to denature first in almost all high-temperature simulations. Notably, a stable intermediate is found in experimental equilibrium unfolding studies of one of the simulated consensus proteins. On the basis of simulation results, this intermediate is interpreted to represent a conformation with a denatured C-terminal repeat. To validate this interpretation, constructs without C-terminal capping repeat were prepared and did not show this intermediate in equilibrium unfolding experiments. Conversely, the capping repeats were found to be essential for efficient folding in the cell and for avoiding aggregation, presumably because of their highly charged surface. To design a capping repeat conferring similar solubility properties yet even higher stability, eight point mutations adapting the C-cap to the consensus AR and adding a three-residue extension at the C-terminus were predicted in silico and validated experimentally. The in vitro full-consensus proteins were also compared with a previously published designed AR protein, E3_5, whose internal repeats show 80% identity in primary sequence. A detailed analysis of the simulations suggests that networks of salt bridges between β-hairpins, as well as additional interrepeat hydrogen bonds, contribute to the extraordinary stability of the full consensus.  相似文献   

5.
Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.  相似文献   

6.
7.
Repeat proteins are constructed from a linear array of modular units, giving rise to an overall topology lacking long-range interactions. This suggests that stabilizing repeat modules based on consensus information might be added to a repeat protein domain, allowing it to be extended without altering its overall topology. Here we add consensus modules the ankyrin repeat domain from the Drosophila Notch receptor to investigate the structural tolerance to these modules, the relative thermodynamic stability of these hybrid proteins, and how alterations in the energy landscape influence folding kinetics. Insertions of consensus modules between repeats five and six of the Notch ankyrin domain have little effect on the far and near-UV CD spectra, indicating that neither secondary nor tertiary structure is dramatically altered. Furthermore, stable structure is maintained at increased denaturant concentrations in the polypeptides containing the consensus repeats, indicating that the consensus modules are capable of stabilizing much of the domain. However, insertion of the consensus repeats appears to disrupt cooperativity, producing a two-stage (three-state) unfolding transition in which the C-terminal repeats unfold at moderate urea concentrations. Removing the C-terminal repeats (Notch ankyrin repeats six and seven) restores equilibrium two-state folding and demonstrates that the high stability of the consensus repeats is propagated into the N-terminal, naturally occurring Notch ankyrin repeats. This stability increase greatly increases the folding rate, and suggests that the transition state ensemble may be repositioned in the chimeric consensus-stabilized proteins in response to local stability.  相似文献   

8.
The p19(INK4d) protein consists of five ankyrin repeats (ANK) and controls the human cell cycle by inhibiting the cyclin D-dependent kinases (CDK) 4 and 6. We investigated the folding of p19(INK4d) by urea-induced unfolding transitions, kinetic analyses of unfolding and refolding, including double-mixing experiments and a special assay for folding intermediates. Folding is a sequential two-step reaction via a hyperfluorescent on-pathway intermediate. This intermediate is present under all conditions, during unfolding, refolding and at equilibrium. The folding mechanism was confirmed by a quantitative global fit of a consistent set of equilibrium and kinetic data revealing the thermodynamics and intrinsic folding rates of the different states. Surprisingly, the N<-->I transition is much faster compared to the I<-->U transition. The urea-dependence of the intrinsic folding rates causes population of the intermediate at equilibrium close to the transition midpoint. NMR detected hydrogen/deuterium exchange and the analysis of truncated variants showed that the C-terminal repeats ANK3-5 are already folded in the on-pathway intermediate, whereas the N-terminal repeats 1 and 2 are not folded. We suggest that during refolding, repeats ANK3-ANK5 first form the scaffold for the subsequent assembly of repeats ANK1 and ANK2. The binding function of p19(INK4d) resides in the latter repeats. We propose that the graded stability and the facile unfolding of repeats 1 and 2 is a prerequisite for the down-regulation of the inhibitory activity of p19(INK4d) during the cell-cycle.  相似文献   

9.
The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly α-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (ΔGU-NH2O) is 5.8 kcal.mol−1. The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (kfH2O) of 95 s−1 is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies.  相似文献   

10.
There is an ever-increasing demand to select specific, high-affinity binding molecules against targets of biomedical interest. The success of such selections depends strongly on the design and functional diversity of the library of binding molecules employed, and on the performance of the selection strategy. We recently developed SRP phage display that employs the cotranslational signal recognition particle (SRP) pathway for the translocation of proteins to the periplasm. This system allows efficient filamentous phage display of highly stable and fast-folding proteins, such as designed ankyrin repeat proteins (DARPins) that are virtually refractory to conventional phage display employing the post-translational Sec pathway. DARPins comprise a novel class of binding molecules suitable to complement or even replace antibodies in many biotechnological or biomedical applications. So far, all DARPins have been selected by ribosome display. Here, we harnessed SRP phage display to generate a phage DARPin library containing more than 1010 individual members. We were able to select well behaved and highly specific DARPins against a broad range of target proteins having affinities as low as 100 pM directly from this library, without affinity maturation. We describe efficient selection on the Fc domain of human IgG, TNFα, ErbB1 (EGFR), ErbB2 (HER2) and ErbB4 (HER4) as examples. Thus, SRP phage display makes filamentous phage display accessible for DARPins, allowing, for example, selection under harsh conditions or on whole cells. We envision that the use of SRP phage display will be beneficial for other libraries of stable and fast-folding proteins.  相似文献   

11.
The ankyrin repeat as molecular architecture for protein recognition   总被引:29,自引:0,他引:29  
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.  相似文献   

12.
Recent reports have provided evidence that the β-hydroxylation of conserved asparaginyl residues in ankyrin repeat domain (ARD) proteins is a common posttranslational modification in animal cells. Here, nuclear magnetic resonance (NMR) and other biophysical techniques are used to study the effect of asparaginyl β-hydroxylation on the structure and stability of ‘consensus’ ARD proteins. The NMR analyses support previous work suggesting that a single β-hydroxylation of asparagine can stabilize the stereotypical ARD fold. A second asparaginyl β-hydroxylation causes further stabilization. In combination with mutation studies, the biophysical analyses reveal that the stabilizing effect of β-hydroxylation is, in part, mediated by a hydrogen bond between the asparaginyl β-hydroxyl group and the side chain of a conserved aspartyl residue, two residues to the N-terminal side of the target asparagine. Removal of this hydrogen bond resulted in reduced stabilization by hydroxylation. Formation of the same hydrogen bond is also shown to be a factor in inhibiting binding of hydroxylated ARDs to factor-inhibiting hypoxia-inducible factor (FIH). The effects of hydroxylation appear to be predominantly localized to the target asparagine and proximal residues, at least in the consensus ARD protein. The results reveal that thermodynamic stability is a factor in determining whether a particular ARD protein is an FIH substrate; a consensus ARD protein with three ankyrin repeats is an FIH substrate, while more stable consensus ARD proteins, with four or five ankyrin repeats, are not. However, NMR studies reveal that the consensus protein with four ankyrin repeats is still able to bind to FIH, suggesting that FIH may interact in cells with natural ankyrin repeats without resulting hydroxylation. Overall, the work provides novel biophysical insights into the mechanism by which asparaginyl β-hydroxylation stabilizes the ARD proteins and reduces their binding to FIH.  相似文献   

13.
Ankyrin repeats (AR) are 33-residue motifs containing a beta-turn, followed by two alpha-helices connected by a loop. AR occur in tandem arrangements and stack side-by-side to form elongated domains involved in very different cellular tasks. Recently, consensus libraries of AR repeats were constructed. Protein E1_5 represents a member of the shortest library, and consists of only a single consensus repeat flanked by designed N- and C-terminal capping repeats. Here we present a biophysical characterization of this AR domain. The protein is compactly folded, as judged from the heat capacity of the native state and from the specific unfolding enthalpy and entropy. From spectroscopic data, thermal and urea-induced unfolding can be modeled by a two-state transition. However, scanning calorimetry experiments reveal a deviation from the two-state behavior at elevated temperatures. Folding and unfolding at 5 degrees C both follow monoexponential kinetics with k(folding) = 28 sec(-1) and k(unfolding) = 0.9 sec(-1). Kinetic and equilibrium unfolding parameters at 5 degrees C agree very well. We conclude that E1_5 folds in a simple two-state manner at low temperatures while equilibrium intermediates become populated at higher temperatures. A chevron-plot analysis indicates that the protein traverses a very compact transition state along the folding/unfolding pathway. This work demonstrates that a designed minimal ankyrin repeat protein has the thermodynamic and kinetic properties of a compactly folded protein, and explains the favorable properties of the consensus framework.  相似文献   

14.
15.
The ankyrin repeat (AR) domain of IκBα consists of a cooperative folding unit of roughly four ARs (AR1-AR4) and of two weakly folded repeats (AR5 and AR6). The kinetic folding mechanism of the cooperative subdomain, IκBα67-206, was analyzed using rapid mixing techniques. Despite its apparent architectural simplicity, IκBα67-206 displays complex folding kinetics, with two sequential on-pathway high-energy intermediates. The effect of mutations to or away from the consensus sequences of ARs on folding behavior was analyzed, particularly the GXTPLHLA motif, which have not been examined in detail previously. Mutations toward the consensus generally resulted in an increase in folding stability, whereas mutations away from the consensus resulted in decreased overall stability. We determined the free energy change upon mutation for three sequential transition state ensembles along the folding route for 16 mutants. We show that folding initiates with the formation of the interface of the outer helices of AR3 and AR4, and then proceeds to consolidate structure in these repeats. Subsequently, AR1 and AR2 fold in a concerted way in a single kinetic step. We show that this mechanism is robust to the presence of AR5 and AR6 as they do not strongly affect the folding kinetics. Overall, the protein appears to fold on a rather smooth energy landscape, where the folding mechanism conforms a one-dimensional approximation. However, we note that the AR does not necessarily act as a single folding element.  相似文献   

16.
Capping motifs are found to flank most β‐strand‐containing repeat proteins. To better understand the roles of these capping motifs in organizing structure and stability, we carried out folding and solution NMR studies on the leucine‐rich repeat (LRR) domain of PP32, which is composed of five tandem LRR, capped by α‐helical and β‐hairpin motifs on the N‐ and C‐termini. We were able to purify PP32 constructs lacking either cap and containing destabilizing substitutions. Removing the C‐cap results in complete unfolding of PP32. Removing the N‐cap has a much less severe effect, decreasing stability but retaining much of its secondary structure. In contrast, the dynamics and tertiary structure of the first two repeats are significantly perturbed, based on 1H‐15N relaxation studies, chemical shift perturbations, and residual dipolar couplings. However, more distal repeats (3 to C‐cap) retain their native tertiary structure. In this regard, the N‐cap drives the folding of adjacent repeats from what appears to be a molten‐globule‐like state. This interpretation is supported by extensive analysis using core packing substitutions in the full‐length and N‐cap‐truncated PP32. This work highlights the importance of caps to the stability and structural integrity of β‐strand‐containing LRR proteins, and emphasizes the different contributions of the N‐ and C‐terminal caps.  相似文献   

17.
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect.  相似文献   

18.
M E Zweifel  D Barrick 《Biochemistry》2001,40(48):14357-14367
To define the boundaries of the Drosophila Notch ankyrin domain, examine the effects of repeat number on the folding of this domain, and examine the degree to which the modular architecture of ankyrin repeat proteins results in modular stability, we have investigated the thermodynamics of unfolding of polypeptides corresponding to different segments of the ankyrin repeats of Drosophila Notch. We find that a polypeptide containing the six previously identified ankyrin repeats unfolds cooperatively, but is of modest stability. However, inclusion of a putative seventh, C-terminal ankyrin sequence doubles the stability of the Notch ankyrin domain (a 1000-fold increase in the folding equilibrium constant), indicating that the seventh ankyrin repeat is an important part of the Notch ankyrin domain, and demonstrating long-range interactions among ankyrin repeats. This putative seven-repeat polypeptide also shows increases in enthalpy, denaturant dependence (m-value), and heat capacity of unfolding (DeltaC(p)()) of around 50% each, suggesting that deletion of the seventh repeat results in partial unfolding of the sixth ankyrin repeat, consistent with spectroscopic and hydrodynamic data reported in the preceding paper [Zweifel, M. E., and Barrick, D. (2001) Biochemistry 40, 14344-14356]. A polypeptide consisting of only the five N-terminal repeats has stability similar to the six-repeat construct, demonstrating that stability is distributed asymmetrically along the ankyrin domain. These data are consistent with highly cooperative two-state folding of these ankyrin polypeptides, despite their modular architecture.  相似文献   

19.
TRPV channels are important polymodal integrators of noxious stimuli mediating thermosensation and nociception. An ankyrin repeat domain (ARD), which is a common protein-protein recognition domain, is conserved in the N-terminal intracellular domain of all TRPV channels and predicted to contain three to four ankyrin repeats. Here we report the first structure from the TRPV channel subfamily, a 1.7 A resolution crystal structure of the human TRPV2 ARD. Our crystal structure reveals a six ankyrin repeat stack with multiple insertions in each repeat generating several unique features compared with a canonical ARD. The surface typically used for ligand recognition, the ankyrin groove, contains extended loops with an exposed hydrophobic patch and a prominent kink resulting from a large rotational shift of the last two repeats. The TRPV2 ARD provides the first structural insight into a domain that coordinates nociceptive sensory transduction and is likely to be a prototype for other TRPV channel ARDs.  相似文献   

20.
Ankryin repeat proteins comprise tandem arrays of a 33-residue, predominantly α-helical motif that stacks roughly linearly to produce elongated and superhelical structures. They function as scaffolds mediating a diverse range of protein-protein interactions, and some have been proposed to play a role in mechanical signal transduction processes in the cell. Here we use atomic force microscopy and molecular-dynamics simulations to investigate the natural 7-ankyrin repeat protein gankyrin. We find that gankyrin unfolds under force via multiple distinct pathways. The reactions do not proceed in a cooperative manner, nor do they always involve fully stepwise unfolding of one repeat at a time. The peeling away of half an ankyrin repeat, or one or more ankyrin repeats, occurs at low forces; however, intermediate species are formed that are resistant to high forces, and the simulations indicate that in some instances they are stabilized by nonnative interactions. The unfolding of individual ankyrin repeats generates a refolding force, a feature that may be more easily detected in these proteins than in globular proteins because the refolding of a repeat involves a short contraction distance and incurs a low entropic cost. We discuss the origins of the differences between the force- and chemical-induced unfolding pathways of ankyrin repeat proteins, as well as the differences between the mechanics of natural occurring ankyrin repeat proteins and those of designed consensus ankyin repeat and globular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号