首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12 × 10− 4 min− 1 μM− 1. Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.  相似文献   

2.
Catalysis of ADP-ATP exchange by nucleotide exchange factors (NEFs) is central to the activity of Hsp70 molecular chaperones. Yet, the mechanism of interaction of this family of chaperones with NEFs is not well understood in the context of the sequence evolution and structural dynamics of Hsp70 ATPase domains. We studied the interactions of Hsp70 ATPase domains with four different NEFs on the basis of the evolutionary trace and co-evolution of the ATPase domain sequence, combined with elastic network modeling of the collective dynamics of the complexes. Our study reveals a subtle balance between the intrinsic (to the ATPase domain) and specific (to interactions with NEFs) mechanisms shared by the four complexes. Two classes of key residues are distinguished in the Hsp70 ATPase domain: (i) highly conserved residues, involved in nucleotide binding, which mediate, via a global hinge-bending, the ATPase domain opening irrespective of NEF binding, and (ii) not-conserved but co-evolved and highly mobile residues, engaged in specific interactions with NEFs (e.g., N57, R258, R262, E283, D285). The observed interplay between these respective intrinsic (pre-existing, structure-encoded) and specific (co-evolved, sequence-dependent) interactions provides us with insights into the allosteric dynamics and functional evolution of the modular Hsp70 ATPase domain.  相似文献   

3.
Interaction of Hsp70 with natural and artificial acidic glycans is demonstrated based on the native PAGE analysis. Hsp70 interacts with acidic glycopolymers that contain clustered sulfated and di-sialylated glycan moieties on a polyacrylamide backbone, but not with neutral or mono-sialylated glycopolymers. Hsp70 also interacts and forms a large complex with heparin, heparan sulfate, and dermatan sulfate that commonly contain 2-O-sulfated iduronic acid residues, but not with other types of glycosaminoglycans (GAGs). Hsp70 consists of the N-terminal ATPase domain and the C-terminal peptide-binding domain. The interaction analyses using the recombinant N- and C-terminal half domains show that the ATPase domain mediates the direct interaction with acidic glycans, while the peptide-binding domain stabilizes the large complexes with particular GAGs. To our knowledge, this is the first demonstration of direct binding of Hsp70 to the particular GAGs. This property may be involved in the physiological functions of Hsp70 at the plasma membrane and extracellular environments.  相似文献   

4.
The ubiquitous Hsp90 is critical for protein homeostasis in the cells, stabilizing “client” proteins in a functional state. Hsp90 activity depends on its ability to bind and hydrolyze ATP, involving various conformational changes that are regulated by co-chaperones, posttranslational modifications and small molecules. Compounds like geldanamycin (GA) and radicicol inhibit the Hsp90 ATPase activity by occupying the ATP binding site, which can lead client protein to degradation and also inhibit cell growth and differentiation in protozoan parasites. Our goal was to produce the recombinant Hsp90 of Leishmania braziliensis (LbHsp90) and construct of its N-terminal (LbHsp90N) and N-domain and middle-domain (LbHsp90NM), which lacks the C-terminal dimerization domain, in order to understand how Hsp90 works in protozoa. The recombinant proteins were produced folded as attested by spectroscopy experiments. Hydrodynamic experiments revealed that LbHsp90N and LbHsp90NM behaved as elongated monomers while LbHsp90 is an elongated dimer. All proteins prevented the in vitro citrate synthase and malate dehydrogenase aggregation, attesting that they have chaperone activity, and interacted with adenosine ligands with similar dissociation constants. The LbHsp90 has low ATPase activity (kcat = 0.320 min− 1) in agreement with Hsp90 orthologs, whereas the LbHsp90NM has negligible activity, suggesting the importance of the dimeric protein for this activity. The GA interacts with LbHsp90 and with its domain constructions with different affinities and also inhibits the LbHsp90 ATPase activity with an IC50 of 0.7 μM. All these results shed light on the LbHsp90 activity and are the first step to understanding the Hsp90 molecular chaperone system in L. braziliensis.  相似文献   

5.
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an α carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Cα-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Cα-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T → R and R″ → T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T → R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R″ → T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R″ → T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R″ → T transition. The cochaperonin GroES plays a passive role in the R″ → T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T → R and R″ → T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.  相似文献   

6.
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90.Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure.Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, ‘open’ state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.  相似文献   

7.
Human platelet 12-lipoxygenase (hp-12LOX, 662 residues + iron nonheme cofactor) and its major metabolite 12S-hydroxyeicosatetraenoic acid have been implicated in cardiovascular and renal diseases, many types of cancer and inflammatory responses. However, drug development is slow due to a lack of structural information. The major hurdle in obtaining a high-resolution X-ray structure is growing crystals, a process that requires the preparation of highly homogenous, reproducible and stable protein samples. To understand the properties of hp-12LOX, we have expressed and studied the behavior, function and low-resolution structure of the hp-12LOX His-tagged recombinant enzyme and its mutants in solution. We have found that it is a dimer easily converted into bigger aggregates, which are soluble/covalent-noncovalent/reversible. The heavier oligomers show a higher activity at pH 8, in contrast to dimers with lower activity showing two maxima at pH 7 and pH 8, indicating the existence of two different conformers. In the seven-point C → S mutant, aggregation is diminished, activity has one broad peak at pH 8 and there is no change in specificity. Truncation of the Nt-β-barrel domain (PLAT, residues 1-116) reduces activity to ∼ 20% of that shown by the whole enzyme, does not affect regio- or stereospecificity and lowers membrane binding by a factor of ∼ 2. “NoPLAT” mutants show strong aggregation into oligomers containing six or more catalytic domains regardless of the status of the seven cysteine residues tested. Time-of-flight mass spectrometry suggests two arachidonic acid molecules bound to one molecule of enzyme. Small angle X-ray scattering studies (16 Å resolution, χ∼ 1) suggest that two hp-12LOX monomers are joined by the catalytic domains, with the PLAT domains floating on the flexible linkers away from the main body of the dimer.  相似文献   

8.
In eukaryotic cells, Hsp90 chaperones assist late folding steps of many regulatory protein clients by a complex ATPase cycle. Binding of clients to Hsp90 requires prior interaction with Hsp70 and a transfer reaction that is mediated by the co-chaperone Sti1/Hop. Sti1 furthers client transfer by inhibiting Hsp90's ATPase activity. To better understand how Sti1 prepares Hsp90 for client acceptance, we characterized the interacting domains and analysed how Hsp90 and Sti1 mutually influence their conformational dynamics using hydrogen exchange mass spectrometry. Sti1 stabilizes several regions in all three domains of Hsp90 and slows down dissociation of the Hsp90 dimer. Our data suggest that Sti1 inhibits Hsp90's ATPase activity by preventing N-terminal dimerization and docking of the N-terminal domain with the middle domain. Using crosslinking and mass spectrometry we identified Sti1 segments, which are in close vicinity of the N-terminal domain of Hsp90. We found that the length of the linker between C-terminal dimerization domain and the C-terminal MEEVD motif is important for Sti1 association rates and propose a kinetic model for Sti1 binding to Hsp90.  相似文献   

9.
A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the α-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the “unbound” and “bound” states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2∼P7∼P10 > P9∼P6 > P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.  相似文献   

10.
The coding region of the hsp68 gene has been amplified, cloned, and sequenced from 10 Drosophila species, 5 from the melanogaster subgroup and 5 from the montium subgroup. When the predicted amino acid sequences are compared with available Hsp70 sequences, patterns of conservation suggest that the C-terminal region should be subdivided according to predominant secondary structure. Conservation levels between Hsp68 and Hsp70 proteins were high in the N-terminal ATPase and adjacent beta-sheet domains, medium in the alpha-helix domain, and low in the C-terminal mobile domain (78%, 72%, 41%, and 21% identity, respectively). A number of amino acid sites were found to be "diagnostic" for Hsp68 (28 of approximately 635 residues). A few of these occur in the ATPase domain (385 residues) but most (75%) are concentrated in the beta-sheet and alpha-helix domains (34% of the protein) with none in the short mobile domain. Five of the diagnostic sites in the beta-sheet domain are clustered around, but not coincident with, functional sites known to be involved in substrate binding. Nearly all of the Hsp70 family length variation occurs in the mobile domain. Within montium subgroup species, 2 nearly identical hsp68 PCR products that differed in length are either different alleles or products of an ancestral hsp68 duplication.  相似文献   

11.
Spiderines are comparatively long polypeptide toxins (∼110 residues) from lynx spiders (genus Oxyopes). They are built of an N-terminal linear cationic domain (∼40 residues) and a C-terminal knottin domain (∼60 residues). The linear domain empowers spiderines with strong cytolytic activity. In the present work we report 16 novel spiderine sequences from Oxyopes takobius and Oxyopes lineatus classified into two subfamilies. Strikingly, negative selection acts on both linear and knottin domains. Genes encoding Oxyopes two-domain toxins were sequenced and found to be intronless. We further discuss a possible scenario of lynx spider modular toxin evolution.  相似文献   

12.
The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Δhep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.  相似文献   

13.
Erlin1 and erlin2 are highly homologous, ∼40 kDa, endoplasmic reticulum membrane proteins that assemble into a ring-shaped complex with a mass of ∼2 MDa. How this complex is formed is not understood, but appears to involve multiple interactions, including a coiled-coil region that mediates lower-order erlin assembly, and a short hydrophobic region, termed the “assembly domain”, that mediates higher-order assembly into ∼2 MDa complexes. Here we have used molecular modeling, mutagenesis and cross-linking to examine the role of the assembly domain in higher-order assembly. We find (i) that the assembly domains of erlin1 and erlin2 are amphipathic helices, (ii) that erlin1 alone and erlin2 alone can assemble into ∼2 MDa complexes, (iii) that higher-order assembly is strongly inhibited by point mutations to the assembly domain, (iv) that three interacting hydrophobic residues in the assembly domain and aromaticity are essential for higher-order assembly, and (iv) that while erlins1 and 2 are equally capable of forming lower-order homo- and hetero-oligomers, hetero-oligomers are the most prevalent form when erlin1 and erlin2 are co-expressed. Overall, we conclude that the ∼2 MDa erlin1/2 complex is composed of an assemblage of lower-order hetero-oligomers, probably heterotrimers, linked together by assembly domain hydrophobic residues.  相似文献   

14.
Heat shock protein (Hsp) 70/Hsp90-organizing proteins (Hop/Sti1) are thought to function as adaptor proteins to link the two chaperone machineries Hsp70 and Hsp90 during the processing of substrate proteins in eukaryotes. Hop (Hsp70/Hsp90-organizing protein) is composed of three tetratricopeptide repeat (TPR) domains, of which the first (TPR1) binds to Hsp70, the second (TPR2A) binds to Hsp90, and the third (TPR2B) is of unknown function. Contrary to most other eukaryotes, the homologue closest to the Caenorhabditis elegans Hop homologue R09E12.3 (CeHop) lacks the TPR1 domain and the short linker region connecting it to TPR2A, questioning the reported function as an Hsp90/Hsp70 adaptor in vitro and in vivo. We observed high constitutive expression levels of CeHop and detected significant phenotypes upon knockdown, linking the protein to functions in gonad development. Interestingly, we observed physical interactions with both chaperones Hsp70 and Hsp90, albeit only the interaction with Hsp90 is strong and inhibition of the Hsp90 ATPase activity can be observed upon binding of CeHop. However, the formation of ternary complexes with both chaperone machineries is impaired, as Hsp70 and Hsp90 compete for CeHop interaction sites, in particular as Hsp90 binds to both TPR domains simultaneously and requires both TPR domains for ATPase regulation. These results imply that, at least in C. elegans, essential functions of Hop exist which apparently do not depend on the simultaneous binding of Hsp90 and Hsp70 to Hop.  相似文献   

15.
Structural basis of J cochaperone binding and regulation of Hsp70   总被引:1,自引:0,他引:1  
The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) toward a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, although both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles.  相似文献   

16.
The ubiquitous molecular chaperone 70-kDa heat shock proteins (Hsp70) play key roles in maintaining protein homeostasis. Hsp70s contain two functional domains: a nucleotide binding domain and a substrate binding domain. The two domains are connected by a highly conserved inter-domain linker, and allosteric coupling between the two domains is critical for chaperone function. The auxiliary chaperone 40-kDa heat shock proteins (Hsp40) facilitate all the biological processes associated with Hsp70s by stimulating the ATPase activity of Hsp70s. Although an overall essential role of the inter-domain linker in both allosteric coupling and Hsp40 interaction has been suggested, the molecular mechanisms remain largely unknown. Previously, we reported a crystal structure of a full-length Hsp70 homolog, in which the inter-domain linker forms a well-ordered β strand. Four highly conserved hydrophobic residues reside on the inter-domain linker. In DnaK, a well-studied Hsp70, these residues are V389, L390, L391, and L392. In this study, we biochemically dissected their roles. The inward-facing side chains of V389 and L391 form extensive hydrophobic contacts with the nucleotide binding domain, suggesting their essential roles in coupling the two functional domains, a hypothesis confirmed by mutational analysis. On the other hand, L390 and L392 face outward on the surface. Mutation of either abolishes DnaK's in vivo function, yet intrinsic biochemical properties remain largely intact. In contrast, Hsp40 interaction is severely compromised. Thus, for the first time, we separated the two essential roles of the highly conserved Hsp70 inter-domain linker: coupling the two functional domains through V389 and L391 and mediating the interaction with Hsp40 through L390 and L392.  相似文献   

17.
Heat shock protein 90 (Hsp90), an abundant molecular chaperone in the eukaryotic cytosol, is involved in the folding of a set of cell regulatory proteins and in the re-folding of stress-denatured polypeptides. The basic mechanism of action of Hsp90 is not yet understood. In particular, it has been debated whether Hsp90 function is ATP dependent. A recent crystal structure of the NH2-terminal domain of yeast Hsp90 established the presence of a conserved nucleotide binding site that is identical with the binding site of geldanamycin, a specific inhibitor of Hsp90. The functional significance of nucleotide binding by Hsp90 has remained unclear. Here we present evidence for a slow but clearly detectable ATPase activity in purified Hsp90. Based on a new crystal structure of the NH2-terminal domain of human Hsp90 with bound ADP-Mg and on the structural homology of this domain with the ATPase domain of Escherichia coli DNA gyrase, the residues of Hsp90 critical in ATP binding (D93) and ATP hydrolysis (E47) were identified. The corresponding mutations were made in the yeast Hsp90 homologue, Hsp82, and tested for their ability to functionally replace wild-type Hsp82. Our results show that both ATP binding and hydrolysis are required for Hsp82 function in vivo. The mutant Hsp90 proteins tested are defective in the binding and ATP hydrolysis–dependent cycling of the co-chaperone p23, which is thought to regulate the binding and release of substrate polypeptide from Hsp90. Remarkably, the complete Hsp90 protein is required for ATPase activity and for the interaction with p23, suggesting an intricate allosteric communication between the domains of the Hsp90 dimer. Our results establish Hsp90 as an ATP-dependent chaperone.  相似文献   

18.
Hsp70 molecular chaperones contain three distinct structural domains, a 44 kDa N-terminal ATPase domain, a 17 kDa peptide-binding domain, and a 10 kDa C-terminal domain. The ATPase and peptide binding domains are conserved in sequence and are functionally well characterized. The function of the 10 kDa variable C-terminal domain is less well understood. We have characterized the secondary structure and dynamics of the C-terminal domain from the Escherichia coli Hsp70, DnaK, in solution by high-resolution NMR. The domain was shown to be comprised of a rigid structure consisting of four helices and a flexible C-terminal subdomain of approximately 33 amino acids. The mobility of the flexible region is maintained in the context of the full-length protein and does not appear to be modulated by the nucleotide state. The flexibility of this region appears to be a conserved feature of Hsp70 architecture and may have important functional implications. We also developed a method to analyze 15N nuclear spin relaxation data, which allows us to extract amide bond vector directions relative to a unique diffusion axis. The extracted angles and rotational correlation times indicate that the helices form an elongated, bundle-like structure in solution.  相似文献   

19.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

20.
Endoglin is a type I membrane protein expressed as a disulphide-linked homodimer on human vascular endothelial cells whose haploinsufficiency is responsible for the dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia (HHT). Structurally, endoglin belongs to the zona pellucida (ZP) family of proteins that share a ZP domain of ∼ 260 amino acid residues at their extracellular region. Endoglin is a component of the TGF-β receptor complex, interacts with the TGF-β signalling receptors types I and II, and modulates cellular responses to TGF-β. Here, we have determined for the first time the three-dimensional structure of the ∼ 140 kDa extracellular domain of endoglin at 25 Å resolution, using single-particle electron microscopy (EM). This reconstruction provides the general architecture of endoglin, which arranges as a dome made of antiparallel oriented monomers enclosing a cavity at one end. A high-resolution structure of endoglin has also been modelled de novo and found to be consistent with the experimental reconstruction. Each subunit comprises three well-defined domains, two of them corresponding to ZP regions, organised into an open U-shaped monomer. This domain arrangement was found to closely resemble the overall structure derived experimentally and the three modelled de novo domains were tentatively assigned to the domains observed in the EM reconstruction. This molecular model was further tested by tagging endoglin's C terminus with an IgG Fc fragment visible after 3D reconstruction of the labelled protein. Combined, these data provide the structural framework to interpret endoglin's functional domains and mutations found in HHT patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号