首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 Å resolution. RCCR forms a homodimer, in which each subunit folds in an α/β/α sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the α-helices near the edge of the β-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis.  相似文献   

2.
Tang Y  Li M  Chen Y  Wu P  Wu G  Jiang H 《Journal of plant physiology》2011,168(16):1952-1959
  相似文献   

3.
One important reaction of chlorophyll (chl) breakdown during plant senescence is the removal of the lipophilic phytol moiety by chlorophyllase. AtCLH1 and AtCLH2 were considered to be required for this reaction in Arabidopsis thaliana. Here we present evidence against this assumption. Using green fluorescent protein fusions, neither AtCLH isoform localizes to chloroplasts, the predicted site of chlorophyll breakdown. Furthermore, clh1 and clh2 single and double knockout lines are still able to degrade chlorophyll during senescence. From our data we conclude that AtCLHs are not required for senescence-related chlorophyll breakdown in vivo and propose that genuine chlorophyllase has not yet been molecularly identified.  相似文献   

4.
Evolution of Chlorophyll Degradation: The Significance of RCC Reductase   总被引:5,自引:0,他引:5  
Abstract: In angiosperms the key process of chlorophyll breakdown in senescing leaves is catalyzed by pheophorbide a oxygenase and RCC reductase which, in a metabolically channeled reaction, cleave the porphyrin macrocycle and produce a colourless primary catabolite, pFCC. RCC reductase is responsible for the reduction of the C20/C1 double bond of the intermediary catabolite, RCC. Depending on plant species, RCC reductase produces one of the two C1 stereoisomers, pFCC-1 or pFCC-2. Screening of a large number of taxa for the type of RCCR revealed that the isomer produced is uniform within families. It also revealed that type RCCR-2 is predominant; RCCR-1 seems to represent a recent derivation which in unrelated lineages has evolved independently from RCCR-2. A third type of pFCC was produced by RCCR from basal pteridophytes and some gymnosperms; its structure is unknown. Collectively, the data suggest that the pathway of chlorophyll breakdown is very conserved in vascular plants. RCCR appears to represent a decisive addition to the catabolic pathway: it allows terrestrial plants to metabolize the porphyrin part of the chlorophyll molecule to photodynamically inactive final products that are stored in the vacuoles of senescing mesophyll cells.  相似文献   

5.
Acetabularia rhodopsin (AR) is a rhodopsin from the marine plant Acetabularia acetabulum. The opsin-encoding gene from A. acetabulum, ARII, was cloned and found to be novel but homologous to that reported previously. ARII is a light-driven proton pump, as demonstrated by the existence of a photo-induced current through Xenopus oocytes expressing ARII. The photochemical reaction of ARII prepared by cell-free protein synthesis was similar to that of bacteriorhodopsin (BR), except for the lack of light-dark adaptation and the different proton release and uptake sequence. The crystal structure determined at 3.2 Å resolution is the first structure of a eukaryotic member of the microbial rhodopsin family. The structure of ARII is similar to that of BR. From the cytoplasmic side to the extracellular side of the proton transfer pathway in ARII, Asp92, a Schiff base, Asp207, Asp81, Arg78, Glu199, and Ser189 are arranged in positions similar to those of the corresponding residues directly involved in proton transfer by BR. The side-chain carboxyl group of Asp92 appears to interact with the sulfhydryl group of Cys218, which is unique to ARII and corresponds to Leu223 of BR and to Asp217 of Anabaena sensory rhodopsin. The orientation of the Arg78 side chain is opposite to the corresponding Arg82 of BR. The putative absence of water molecules around Glu199 and Arg78 may disrupt the formation of the low-barrier hydrogen bond at Glu199, resulting in the “late proton release”.  相似文献   

6.
Geranylgeranyl reductase catalyses the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate required for synthesis of chlorophylls, phylloquinone and tocopherols. The gene chlP (ORF sll1091) encoding the enzyme has been inactivated in the cyanobacterium Synechocystis sp. PCC 6803. The resulting ΔchlP mutant accumulates exclusively geranylgeranylated chlorophyll a instead of its phytylated analogue as well as low amounts of α-tocotrienol instead of α-tocopherol. Whereas the contents of chlorophyll and total carotenoids are decreased, abundance of phycobilisomes is increased in ΔchlP cells. The mutant assembles functional photosystems I and II as judged from 77 K fluorescence and electron transport measurements. However, the mutant is unable to grow photoautotrophically due to instability and rapid degradation of the photosystems in the absence of added glucose. We suggest that instability of the photosystems in ΔchlP is directly related to accumulation of geranylgeranylated chlorophyll a. Increased rigidity of the chlorophyll isoprenoid tail moiety due to three additional CC bonds is the likely cause of photooxidative stress and reduced stability of photosynthetic pigment-protein complexes assembled with geranylgeranylated chlorophyll a in the ΔchlP mutant.  相似文献   

7.
Red chlorophyll catabolite (RCC) reductase (RCCR) and pheophorbide (Pheide) a oxygenase (PaO) catalyse the key reaction of chlorophyll catabolism, porphyrin macrocycle cleavage of Pheide a to a primary fluorescent catabolite (pFCC). RCCR was purified from barley and a partial gene sequence was cloned (pHvRCCR). The gene was expressed at all stages of leaf development and in roots. By comparison with different databases, genomic sequences and expressed sequence tags similar to RCCR were found in phylogenetically diverse species, and activity of RCCR was demonstrated in two of them, Arabidopsis thaliana and Marchantia polymorpha. The gene of A. thaliana (AtRCCR) was employed for molecular cloning, heterologous expression and the production of polyclonal antibodies. With recombinant RCCR, the major product of RCC reduction was pFCC-1, but small quantities of its C1 epimer, pFCC-2, also accumulated. The reaction required reduced ferredoxin and was sensitive to oxygen. AtRCCR encoded a 35 kDa protein which was used for chloroplast import experiments. Upon transport, it was processed to a mature form of 31 kDa. The significance of cloning of RCCR is discussed in respect to the evolution of chlorophyll catabolism and to the cloning of PaO.  相似文献   

8.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

9.
5′-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5′-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5′-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 Å resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5′-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5′-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and Streptococcus pneumoniae MTAN, may be different from that found in EcMTAN.  相似文献   

10.
Bovine CD38/NAD+ glycohydrolase catalyzes the hydrolysis of NAD+ to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide–ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD+. To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2′-OH group of NAD+, was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.  相似文献   

11.
d-Arabinose isomerase (d-AI), also known as l-fucose isomerase (l-FI), catalyzes the aldose–ketose isomerization of d-arabinose to d-ribulose, and l-fucose to l-fuculose. Bacillus pallidus (B. pallidus) d-AI can catalyze isomerization of d-altrose to d-psicose, as well as d-arabinose and l-fucose. Three X-ray structures of B. pallidusd-AI in complexes with 2-methyl-2,4-pentadiol, glycerol and an inhibitor, l-fucitol, were determined at resolutions of 1.77, 1.60 and 2.60 Å, respectively. B. pallidusd-AI forms a homo-hexamer, and one subunit has three domains of almost equal size; two Rossmann fold domains and a mimic of the (β/α) barrel fold domain. A catalytic metal ion (Mn2+) was found in the active site coordinated by Glu342, Asp366 and His532, and an additional metal ion was found at the channel for the passage of a substrate coordinated by Asp453. The X-ray structures basically supported the ene-diol mechanism for the aldose–ketose isomerization by B. pallidusd-AI, as well as Escherichia coli (E. coli) l-FI, in which Glu342 and Asp366 facing each other at the catalytic metal ion transfer a proton from C2 to C1 and O1 to O2, acting as acid/base catalysts, respectively. However, considering the ionized state of Asp366, the catalytic reaction also possibly occurs through the negatively charged ene-diolate intermediate stabilized by the catalytic metal ion. A structural comparison with E. colil-FI showed that B. pallidusd-AI possibly interconverts between “open” and “closed” forms, and that the additional metal ion found in B. pallidusd-AI may help to stabilize the channel region.  相似文献   

12.
In plants, phytochromobilin synthase (HY2) synthesize the open chain tetrapyrrole chromophore for light-sensing phytochromes. It catalyzes the double bond reduction of a heme-derived tetrapyrrole intermediate biliverdin IXα (BV) at the A-ring diene system. HY2 is a member of ferredoxin-dependent bilin reductases (FDBRs), which require ferredoxins (Fds) as the electron donors for double bond reductions. In this study, we investigated the interaction mechanism of FDBRs and Fds by using HY2 and Fd from Arabidopsis thaliana as model proteins. We found that one of the six Arabidopsis Fds, AtFd2, was the preferred electron donor for HY2. HY2 and AtFd2 formed a heterodimeric complex that was stabilized by chemical cross-linking. Surface-charged residues on HY2 and AtFd2 were important in the protein-protein interaction as well as BV reduction activity of HY2. These surface residues are close to the iron-sulfur center of Fd and the HY2 active site, implying that the interaction promotes direct electron transfer from the Fd to HY2-bound BV. In addition, the C12 propionate group of BV is important for HY2-catalyzed BV reduction. A possible role for this functional group is to mediate the electron transfer by interacting directly with AtFd2. Together, our biochemical data suggest a docking mechanism for HY2:BV and AtFd2.  相似文献   

13.
The prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.  相似文献   

14.
Two distinct groups of 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS), a key enzyme of cell-wall biosynthesis, differ by their requirement for a divalent metal ion for enzymatic activity. The unique difference between these groups is the replacement of the metal-binding Cys by Asn. Substitution of just this Asn for a Cys in metal-independent KDO8PS does not create the obligate metal-ion dependency of natural metal-dependent enzymes. We describe how three or four mutations of the metal-independent KDO8PS from Neisseria meningitidis produce a fully functional, obligately metal-dependent KDO8PS. For the substitutions Asn23Cys, Asp247Glu (this Asp binds to the metal ion in all metal-dependent KDO8PS) and Pro249Ala, and for double and triple combinations, mutant enzymes that contained Cys in place of Asn showed an increase in activity in the presence of divalent metal ions. However, combining these mutations with substitution by Ser of the Cys residue in the conserved 246CysAspGlyPro249 motif of metal-independent KDO8PS created enzymes with obligate metal dependency. The quadruple mutant (Asn23Cys/Cys246Ser/Asp247Glu/Pro249Ala) showed comparable activity to wild-type enzymes only in the presence of metal ions, with maximum activity with Cd2+, the metal ion that is strongly inhibitory at micromolar concentrations for the wild-type enzyme. In the absence of metal ions, activity was barely detectable for this quadruple mutant or for triple mutants bearing both Cys246Ser and Asn23Cys mutations. The structures of NmeKDO8PS and its Asn23Cys/Asp247Glu/Pro249Ala and quadruple mutants at pH 4.6 were characterized at resolutions better than 1.85 Å. Aged crystals of the Asn23Cys/Asp247Glu/Pro249Ala mutant featured a Cys23-Cys246 disulfide linkage, explaining the spectral bleaching observed when this mutant was incubated with Cu2+. Such bleaching was not observed for the quadruple mutant. Reverse evolution to a fully functional obligately metal-dependent KDO8PS has been achieved with just three directed mutations for enzymes that have, at best, 47% identity between metal-dependent and metal-independent pairs.  相似文献   

15.
16.
Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.  相似文献   

17.
The current study was conducted to explore the potential of a phosphate solubilizing soil bacterium, Bacillus megaterium mj1212 for enhancing the growth of mustard plants. The newly isolated bacterial strain mj1212 was identified as B. megaterium using phylogenetic analysis and, its phosphate solubilization ability was shown by the clear zone formation on National Botanical Research Institute’s Phosphate medium. Moreover, the phosphate solubilization ability of B. megaterium mj1212 was enhanced by optimal culture conditions at pH 7.0 and 35 °C which might be due to the presence of malic and quinic acid in the culture medium. The beneficial effect of B. megaterium mj1212 in mustard plants was determined by an increasing shoot length, root length and fresh weight of plants. In the biochemical analysis revealed that chlorophyll, sucrose, glucose, fructose and amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ilu, Leu, Tyr, Phe, Lys, His, Arg and Pro) were higher in B. megaterium mj1212 treated plants, when compared to their control. The result of present study suggests that B. megaterium mj1212 treatment could be act as phosphate biofertilizer to improve the plant growth.  相似文献   

18.
19.
Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the α,β-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency.  相似文献   

20.
Chlorophyll breakdown in oilseed rape   总被引:2,自引:0,他引:2  
Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase. In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation during Brassica napus seed development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号