首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme–product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.  相似文献   

2.
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.  相似文献   

3.
Vitamin traffic, the production of organic growth factors by some microbial community members and their use by other taxa, is being scrutinized as a potential explanation for the variation and highly connected behavior observed in ocean plankton by community network analysis. Thiamin (vitamin B1), a cofactor in many essential biochemical reactions that modify carbon–carbon bonds of organic compounds, is distributed in complex patterns at subpicomolar concentrations in the marine surface layer (0–300 m). Sequenced genomes from organisms belonging to the abundant and ubiquitous SAR11 clade of marine chemoheterotrophic bacteria contain genes coding for a complete thiamin biosynthetic pathway, except for thiC, encoding the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) synthase, which is required for de novo synthesis of thiamin''s pyrimidine moiety. Here we demonstrate that the SAR11 isolate ‘Candidatus Pelagibacter ubique'', strain HTCC1062, is auxotrophic for the thiamin precursor HMP, and cannot use exogenous thiamin for growth. In culture, strain HTCC1062 required 0.7 zeptomoles per cell (ca. 400 HMP molecules per cell). Measurements of dissolved HMP in the Sargasso Sea surface layer showed that HMP ranged from undetectable (detection limit: 2.4 pM) to 35.7 pM, with maximum concentrations coincident with the deep chlorophyll maximum. In culture, some marine cyanobacteria, microalgae and bacteria exuded HMP, and in the Western Sargasso Sea, HMP profiles changed between the morning and evening, suggesting a dynamic biological flux from producers to consumers.  相似文献   

4.
The database of Clusters of Orthologous Groups of proteins (COGs), which represents an attempt on a phylogenetic classification of the proteins encoded in complete genomes, currently consists of 2791 COGs including 45 350 proteins from 30 genomes of bacteria, archaea and the yeast Saccharomyces cerevisiae (http://www.ncbi.nlm.nih. gov/COG). In addition, a supplement to the COGs is available, in which proteins encoded in the genomes of two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and shared with bacteria and/or archaea were included. The new features added to the COG database include information pages with structural and functional details on each COG and literature references, improvements of the COGNITOR program that is used to fit new proteins into the COGs, and classification of genomes and COGs constructed by using principal component analysis.  相似文献   

5.
The COG database: an updated version includes eukaryotes   总被引:4,自引:0,他引:4  

Background

The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies.

Results

We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes.

Conclusion

The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.  相似文献   

6.
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www. ncbi.nlm. nih.gov/COG). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56-83% of the gene products from each of the complete bacterial and archaeal genomes and approximately 35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes.  相似文献   

7.
In this study, the functions of two established Fe-S cluster biogenesis pathways, Isc (iron-sulfur cluster) and Suf (sulfur mobilization), under aerobic and anaerobic growth conditions were compared by measuring the activity of the Escherichia coli global anaerobic regulator FNR. A [4Fe-4S] cluster is required for FNR activity under anaerobic conditions. An assay of the expression of FNR-dependent promoters in strains containing various deletions of the iscSUAhscBAfdx operon revealed that, under anaerobic conditions, FNR activity was reduced by 60% in the absence of the Isc pathway. In contrast, a mutant lacking the entire Suf pathway had normal FNR activity, although overexpression of the suf operon fully rescued the anaerobic defect in FNR activity in strains lacking the Isc pathway. Expression of the sufA promoter and levels of SufD protein were upregulated by twofold to threefold in Isc  strains under anaerobic conditions, suggesting that increased expression of the Suf pathway may be partially responsible for the FNR activity remaining in strains lacking the Isc pathway. In contrast, use of the O2-stable [4Fe-4S] cluster FNR variant FNR-L28H showed that overexpression of the suf operon did not restore FNR activity to strains lacking the Isc pathway under aerobic conditions. In addition, FNR-L28H activity was more impaired under aerobic conditions than under anaerobic conditions. The greater requirement for the Isc pathway under aerobic conditions was not due to a change in the rate of Fe-S cluster acquisition by FNR-L28H under aerobic and anaerobic conditions, as shown by 55Fe-labeling experiments. Using [35S]methionine pulse-chase assays, we observed that the Isc pathway, but not the Suf pathway, is the major pathway required for conversion of O2-inactivated apo-FNR into [4Fe-4S]FNR upon the onset of anaerobic growth conditions. Taken together, these findings indicate a major role for the Isc pathway in FNR Fe-S cluster biogenesis under both aerobic and anaerobic conditions.  相似文献   

8.
9.
The physiological significance of thiaminase II, which catalyzes the hydrolysis of thiamin, has remained elusive for several decades. The C-terminal domains of THI20 family proteins (THI20/21/22) and the whole region of PET18 gene product of Saccharomyces cerevisiae are homologous to bacterial thiaminase II. On the other hand, the N-terminal domains of THI20 and THI21 encode 2-methyl-4-amino-5-hydroxymethylpyrimidine kinase and 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate kinase involved in the thiamin synthetic pathway. In this study, it was first indicated that the C-terminal domains of the THI20 family and PET18 are not required for de novo thiamin synthesis in S. cerevisiae, using a quadruple deletion strain expressing the N-terminal domain of THI20. Biochemical analysis using cell-free extracts and recombinant proteins demonstrated that yeast thiaminase II activity is exclusively encoded by THI20. It appeared that Thi20p has an affinity for the pyrimidine moiety of thiamin, and HMP produced by the thiaminase II activity is immediately phosphorylated. Thi20p was found to participate in the formation of thiamin from two synthetic antagonists, pyrithiamin and oxythiamin, by hydrolyzing both antagonists and phosphorylating HMP to give HMP pyrophosphate. Furthermore, 2-methyl-4-amino-5-aminomethylpyrimidine, a presumed naturally occurring thiamin precursor, was effectively converted to HMP by incubation with Thi20p. It is proposed that the thiaminase II activity of Thi20p is involved in the thiamin salvage pathway by catalyzing the hydrolysis of HMP precursors in S. cerevisiae.  相似文献   

10.
Treponema pallidum fibronectin-binding proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Putative adhesins were predicted by computer analysis of the Treponema pallidum genome. Two treponemal proteins, Tp0155 and Tp0483, demonstrated specific attachment to fibronectin, blocked bacterial adherence to fibronectin-coated slides, and supported attachment of fibronectin-producing mammalian cells. These results suggest Tp0155 and Tp0483 are fibronectin-binding proteins mediating T. pallidum-host interactions.  相似文献   

11.
12.
The objective of this study was to model a typical dairy waste stream, monitor the chemical and bacterial population dynamics that occur during aerobic or anaerobic treatment and subsequent storage in a simulated lagoon, and compare them to those of waste held without treatment in a simulated lagoon. Both aerobic and anaerobic treatment methods followed by storage effectively reduced the levels of total solids (59 to 68%), biological oxygen demand (85 to 90%), and sulfate (56 to 65%), as well as aerobic (83 to 95%), anaerobic (80 to 90%), and coliform (>99%) bacteria. However, only aerobic treatment reduced the levels of ammonia, and anaerobic treatment was more effective at reducing total sulfur and sulfate. The bacterial population structure of waste before and after treatment was monitored using 16S rRNA gene sequence libraries. Both treatments had unique effects on the bacterial population structure of waste. Aerobic treatment resulted in the greatest change in the type of bacteria present, with the levels of eight out of nine phyla being significantly altered. The most notable differences were the >16-fold increase in the phylum Proteobacteria and the approximately 8-fold decrease in the phylum Firmicutes. Anaerobic treatment resulted in fewer alterations, but significant decreases in the phyla Actinobacteria and Bacteroidetes, and increases in the phyla Planctomycetes, Spirochetes, and TM7 were observed.  相似文献   

13.
Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases.  相似文献   

14.
15.
The genus Fusobacterium belongs to the Fusobacteriaceae family and is a Gram-negative obligate anaerobic bacterium found in the human oral microbiota. Even that Fusobacterium nucleatum cannot grow under aerobic conditions, they may exhibit aerotolerance as an adaptive response which could figure as an important virulence factor, during the stages of infection, when these anaerobes are shifted to aerobic conditions. In this regard, little is known about bacterial oxidative stress adaptive response and the influence of this adaptation on the host-bacteria relationship. We aimed to use both techniques 2-DE and Electrospray Ionization Mass Spectrometry (ESI-MS) to characterize proteins in F. nucleatum, after oxidative stress. We related three different proteins which were up-regulated by oxidative stress. As its genome is already sequenced, these proteins were found in data base search, by homology. Thus, by using techniques as ESI-Q/TOF-MS, in addition to 2-DE, the opportunity exists to gain a more holistic view of the bacterial proteome of human pathogens, to achieve a better understanding of species diversity and to elucidate the role of specific proteins in disease. This work represents one of the first studies using genetic and physiological approaches to understand the phenomenon of oxidative stress in F. nucleatum.  相似文献   

16.
17.
A paralog (here termed COG0212) of the ATP-dependent folate salvage enzyme 5-formyltetrahydrofolate cycloligase (5-FCL) occurs in all domains of life and, although typically annotated as 5-FCL in pro- and eukaryotic genomes, is of unknown function. COG0212 is similar in overall structure to 5-FCL, particularly in the substrate binding region, and has distant similarity to other kinases. The Arabidopsis thaliana COG0212 protein was shown to be targeted to chloroplasts and to be required for embryo viability. Comparative genomic analysis revealed that a high proportion (19%) of archaeal and bacterial COG0212 genes are clustered on the chromosome with various genes implicated in thiamin metabolism or transport but showed no such association between COG0212 and folate metabolism. Consistent with the bioinformatic evidence for a role in thiamin metabolism, ablating COG0212 in the archaeon Haloferax volcanii caused accumulation of thiamin monophosphate. Biochemical and functional complementation tests of several known and hypothetical thiamin-related activities (involving thiamin, its breakdown products, and their phosphates) were, however, negative. Also consistent with the bioinformatic evidence, the COG0212 proteins from A. thaliana and prokaryote sources lacked 5-FCL activity in vitro and did not complement the growth defect or the characteristic 5-formyltetrahydrofolate accumulation of a 5-FCL-deficient (ΔygfA) Escherichia coli strain. We therefore propose (a) that COG0212 has an unrecognized yet sometimes crucial role in thiamin metabolism, most probably in salvage or detoxification, and (b) that is not a 5-FCL and should no longer be so annotated.  相似文献   

18.
BackgroundProtein-protein interaction (PPI) networks are the backbone of all processes in living cells. In this work, we relate conservation, essentiality and functional repertoire of a gene to the connectivity k (i.e. the number of interactions, links) of the corresponding protein in the PPI network.MethodsOn a set of 42 bacterial genomes of different sizes, and with reasonably separated evolutionary trajectories, we investigate three issues: i) whether the distribution of connectivities changes between PPI subnetworks of essential and nonessential genes; ii) how gene conservation, measured both by the evolutionary retention index (ERI) and by evolutionary pressures, is related to the connectivity of the corresponding protein; iii) how PPI connectivities are modulated by evolutionary and functional relationships, as represented by the Clusters of Orthologous Genes (COGs).ResultsWe show that conservation, essentiality and functional specialisation of genes constrain the connectivity of the corresponding proteins in bacterial PPI networks. In particular, we isolated a core of highly connected proteins (connectivities k≥40), which is ubiquitous among the species considered here, though mostly visible in the degree distributions of bacteria with small genomes (less than 1000 genes).ConclusionThe genes that support this highly connected core are conserved, essential and, in most cases, belong to the COG cluster J, related to ribosomal functions and the processing of genetic information.  相似文献   

19.
Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different.  相似文献   

20.
Caldibacillus debilis GB1 is a facultative anaerobe isolated from a thermophilic aero-tolerant cellulolytic enrichment culture. There is a lack of representative proteomes of facultative anaerobic thermophilic Bacillaceae, exploring aerobic/anaerobic expression. The C. debilis GB1 genome was sequenced and annotated, and the proteome characterized under aerobic and anaerobic conditions while grown on cellobiose. The draft sequence of C. debilis GB1 contains a 3,340,752 bp chromosome and a 5,386 bp plasmid distributed over 49 contigs. Two-dimensional liquid chromatography mass spectrometry/mass spectrometry was used with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) to compare protein expression profiles, focusing on energy production and conversion pathways. Under aerobic conditions, proteins in glycolysis and pyruvate fermentation pathways were down-regulated. Simultaneously, proteins within the tricarboxylic acid cycle, pyruvate dehydrogenase, the electron transport chain, and oxygen scavenging pathways showed increased amounts. Under anaerobic conditions, protein levels in fermentation pathways were consistent with the generated end-products: formate, acetate, ethanol, lactate, and CO2. Under aerobic conditions CO2 and acetate production was consistent with incomplete respiration. Through a direct comparison with gene expression profiles from Escherichia coli, we show that global regulation of core metabolism pathways is similar in thermophilic and mesophilic facultative anaerobes of the Phylum Proteobacteria and Firmicutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号