首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

2.
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite − 1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)8-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.  相似文献   

3.
The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.  相似文献   

4.
The crystal structure of a periplasmic l-aspartate/l-glutamate binding protein (DEBP) from Shigella flexneri complexed with an l-glutamate molecule has been determined and refined to an atomic resolution of 1.0 Å. There are two DEBP molecules in the asymmetric unit. The refined model contains 4462 non-hydrogen protein atoms, 730 water molecules, 2 bound glutamate molecules, and 2 Tris molecules from the buffer used in crystallization. The final Rcryst and Rfree factors are 13.61% and 16.89%, respectively. The structure has root-mean-square deviations of 0.016 Å from standard bond lengths and 2.35° from standard bond angles.The DEBP molecule is composed of two similarly folded domains separated by the ligand binding region. Both domains contain a central five-stranded β-sheet that is surrounded by several α-helices. The two domains are linked by two antiparallel β-strands. The overall shape of DEBP is that of an ellipsoid approximately 55 Å × 45 Å × 40 Å in size.The binding of ligand to DEBP is achieved mostly through hydrogen bonds between the glutamate and side-chain and main-chain groups of DEBP. Side chains of residues Arg24, Ser72, Arg75, Ser90, and His164 anchor the deprotonated γ-carboxylate group of the glutamate with six hydrogen bonds. Side chains of Arg75 and Arg90 form salt bridges with the deprotonated α-carboxylate group, while the main-chain amide groups of Thr92 and Thr140 form hydrogen bonds with the same group. The positively charged α-amino group of the l-glutamate forms salt bridge interaction with the side-chain carboxylate group of Asp182 and hydrogen bond interaction with main-chain carbonyl oxygen of Ser90. In addition to these hydrogen bond and electrostatic interactions, other interactions may also play important roles. For example, the two methylene groups from the glutamate form van der Waals interactions with hydrophobic side chains of DEBP.Comparisons with several other periplasmic amino acid binding proteins indicate that DEBP residues involved in the binding of α-amino and α-carboxylate groups of the ligand and the pattern of hydrogen bond formation between these groups are very well conserved, but the binding pocket around the ligand side chain is not, leading to the specificity of DEBP. We have identified structural features of DEBP that determine its ability of binding glutamate and aspartate, two molecules with different sizes, but discriminating against very similar glutamine and asparagine molecules.  相似文献   

5.
Glycogen debranching enzyme (GDE) in mammals and yeast exhibits α-1,4-transferase and α-1,6-glucosidase activities within a single polypeptide chain and facilitates the breakdown of glycogen by a bi-functional mechanism. Each enzymatic activity of GDE is suggested to be associated with distinct domains; α-1,4-glycosyltransferase activity with the N-terminal domain and α-1,6-glucosidase activity with the C-terminal domain. Here, we present the biochemical features of the GDE from Saccharomyces cerevisiae using the substrate glucose(n)-β-cyclodextrin (Gn-β-CD). The bacterially expressed and purified GDE N-terminal domain (aa 1–644) showed α-1,4-transferase activity on maltotetraose (G4) and G4-β-CD, yielding various lengths of (G)n. Surprisingly, the N-terminal domain also exhibited α-1,6-glucosidase activity against G1-β-CD and G4-β-CD, producing G1 and β-CD. Mutational analysis showed that residues D535 and E564 in the N-terminal domain are essential for the transferase activity but not for the glucosidase activity. These results indicate that the N-terminal domain (1–644) alone has both α-1,4-transferase and the α-1,6-glucosidase activities and suggest that the bi-functional activity in the N-domain may occur via one active site, as observed in some archaeal debranching enzymes.  相似文献   

6.
In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14 ± 0.23 mM− 1s− 1, 4.54 ± 0.09 mM− 1s− 1, 0.087 ± 0.02 mM− 1s− 1 and 153.5 ± 7.1 mM− 1s− 1, respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 Å and 2.32 Å, respectively. RhAmidase has three domains: an N-terminal α-helical domain, a small domain and a large domain. The N-terminal α-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix α13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.  相似文献   

7.
Based on sequence and phylogenetic analyses, glycoside hydrolase (GH) family 3 can be divided into several clusters that differ in the length of their primary sequences. However, structural data on representatives of GH3 are still scarce, since only three of their structures are known and only one of them has been thoroughly characterized—that of an exohydrolase from barley. To allow a deeper structural understanding of the GH3 family, we have determined the crystal structure of the thermostable β-glucosidase from Thermotoga neapolitana, which has potentially important applications in environmentally friendly industrial biosynthesis at a resolution of 2.05 Å. Selected active-site mutants have been characterized kinetically, and the structure of the mutant D242A is presented at 2.1 Å resolution. Bgl3B from Th. neapolitana is the first example of a GH3 glucosidase with a three-domain structure. It is composed of an (α/β)8 domain similar to a triose phosphate isomerase barrel, a five-stranded α/β sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain of unknown function. Remarkably, the direction of the second β-strand of the triose phosphate isomerase barrel domain is reversed, which has implications for the active-site shape. The active site, at the interface of domains 1 and 2, is much more open to solvent than the corresponding site in the structurally homologous enzyme from barley, and only the − 1 site is well defined. The structures, in combination with kinetic studies of active-site variants, allow the identification of essential catalytic residues (the nucleophile D242 and the acid/base E458), as well as other residues at the − 1 subsite, including D58 and W243, which, by mutagenesis, are shown to be important for substrate accommodation/interaction. The position of the fibronectin type III domain excludes a direct participation of this domain in the recognition of small substrates, although it may be involved in the anchoring of the enzyme on large polymeric substrates and in thermostability.  相似文献   

8.
An isopullulanase (IPU) from Aspergillus niger ATCC9642 hydrolyzes α-1,4-glucosidic linkages of pullulan to produce isopanose. Although IPU does not hydrolyze dextran, it is classified into glycoside hydrolase family 49 (GH49), major members of which are dextran-hydrolyzing enzymes. IPU is highly glycosylated, making it difficult to obtain its crystal. We used endoglycosidase Hf to cleave the N-linked oligosaccharides of IPU, and we here determined the unliganded and isopanose-complexed forms of IPU, both solved at 1.7-Å resolution. IPU is composed of domains N and C joined by a short linker, with electron density maps for 11 or 12 N-acetylglucosamine residues per molecule. Domain N consists of 13 β-strands and forms a β-sandwich. Domain C, where the active site is located, forms a right-handed β-helix, and the lengths of the pitches of each coil of the β-helix are similar to those of GH49 dextranase and GH28 polygalacturonase. The entire structure of IPU resembles that of a GH49 enzyme, Penicillium minioluteum dextranase (Dex49A), despite a difference in substrate specificity. Compared with the active sites of IPU and Dex49A, the amino acid residues participating in subsites + 2 and + 3 are not conserved, and the glucose residues of isopanose bound to IPU completely differ in orientation from the corresponding glucose residues of isomaltose bound to Dex49A. The shape of the catalytic cleft characterized by the seventh coil of the β-helix and a loop from domain N appears to be critical in determining the specificity of IPU for pullulan.  相似文献   

9.
The gene for a membrane-bound, halophilic, and thermostable α-amylase, AmyB, from Halothermothrix orenii was cloned and sequenced. The crystal structure shows that, in addition to the typical domain organization of family 13 glycoside hydrolases, AmyB carries an additional N-terminal domain (N domain) that forms a large groove—the N-C groove—some 30 Å away from the active site. The structure of AmyB with the inhibitor acarbose at 1.35 Å resolution shows that a nonasaccharide has been synthesized through successive transglycosylation reactions of acarbose. Unexpectedly, in a complex of wild-type AmyB with α-cyclodextrin and maltoheptaose at 2.2 Å resolution, a maltotetraose molecule is bound in subsites − 1 to + 3, spanning the cleavage point at − 1/+ 1, with the − 1 glucosyl residue present as a 2So skew boat. This wild-type AmyB complex was obtained in the presence of a large excess of substrate, a condition under which it is possible to capture Michaelis complexes, which may explain the observed binding across − 1/+ 1 and ring distortion. We observe three methionine side chains that serve as “binding platforms” for glucosyl rings in AmyB, a seemingly rare occurrence in carbohydrate-binding proteins. The structures and results from the biochemical characterization of AmyB and AmyB lacking the N domain show that the N domain increases binding of the enzyme to raw starch. Furthermore, theoretical modeling suggests that the N-C groove can accommodate, spatially and chemically, large substrates such as A-starch.  相似文献   

10.
S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB.  相似文献   

11.
A lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum that shares only weak sequence similarity with characterized fungal lectins has recently been identified. S. sclerotiorum agglutinin (SSA) is a homodimeric protein consisting of two identical subunits of ∼ 17 kDa and displays specificity primarily towards Gal/GalNAc. Glycan array screening indicates that SSA readily interacts with Gal/GalNAc-bearing glycan chains. The crystal structures of SSA in the ligand-free form and in complex with the Gal-β1,3-GalNAc (T-antigen) disaccharide have been determined at 1.6 and 1.97 Å resolution, respectively. SSA adopts a β-trefoil domain as previously identified for other carbohydrate-binding proteins of the ricin B-like lectin superfamily and accommodates terminal non-reducing galactosyl and N-acetylgalactosaminyl glycans. Unlike other structurally related lectins, SSA contains a single carbohydrate-binding site at site α. SSA reveals a novel dimeric assembly markedly dissimilar to those described earlier for ricin-type lectins. The present structure exemplifies the adaptability of the β-trefoil domain in the evolution of fungal lectins.  相似文献   

12.
Di-O-α-maltosyl-β-cyclodextrin ((G2)2-β-CD) was synthesized from 6-O-α-maltosyl-β-cyclodextrin (G2-β-CD) via a transglycosylation reaction catalyzed by TreX, a debranching enzyme from Sulfolobus solfataricus P2. TreX showed no activity toward glucosyl-β-CD, but a transfer product (1) was detected when the enzyme was incubated with maltosyl-β-CD, indicating specificity for a branched glucosyl chain bigger than DP2. Analysis of the structure of the transfer product (1) using MALDI-TOF/MS and isoamylase or glucoamylase treatment revealed it to be dimaltosyl-β-CD, suggesting that TreX transferred the maltosyl residue of a G2-β-CD to another molecule of G2-β-CD by forming an α-1,6-glucosidic linkage. When [14C]-maltose and maltosyl-β-CD were reacted with the enzyme, the radiogram showed no labeled dimaltosyl-β-CD; no condensation product between the two substrates was detected, indicating that the synthesis of dimaltosyl-β-CD occurred exclusively via transglycosylation of an α-1,6-glucosidic linkage. Based on the HPLC elution profile, the transfer product (1) was identified to be isomers of 61,63- and 61,64-dimaltosyl-β-CD. Inhibition studies with β-CD on the transglycosylation activity revealed that β-CD was a mixed-type inhibitor, with a Ki value of 55.6 μmol/mL. Thus, dimaltosyl-β-CD can be more efficiently synthesized by a transglycosylation reaction with TreX in the absence of β-CD. Our findings suggest that the high yield of (G2)2-β-CD from G2-β-CD was based on both the transglycosylation action mode and elimination of the inhibitory effect of β-CD.  相似文献   

13.
Variable pH 13C NMR and 1H NMR spectroscopic studies of the β-cyclodextrin (β-CD) in alkaline aqueous solutions revealed that β-CD does not deprotonate at pH < 12.0. Further increase in solution pH results in the deprotonation of OH-groups adjacent to C-2 and C-3 carbon atoms of β-CD glucopyranose units, whereas the deprotonation of OH-groups adjacent to C-6 carbon atoms is expressed less markedly. The pKa values for β-CD OH-groups adjacent to C-2 and C-3 carbon atoms are rather close, pKa1,2 being 13.5 ± 0.2 (22.5 °C).  相似文献   

14.
Glucansucrase (GSase) from Streptococcus mutans is an essential agent in dental caries pathogenesis. Here, we report the crystal structure of S. mutans glycosyltransferase (GTF-SI), which synthesizes soluble and insoluble glucans and is a glycoside hydrolase (GH) family 70 GSase in the free enzyme form and in complex with acarbose and maltose. Resolution of the GTF-SI structure confirmed that the domain order of GTF-SI is circularly permuted as compared to that of GH family 13 α-amylases. As a result, domains A, B and IV of GTF-SI are each composed of two separate polypeptide chains. Structural comparison of GTF-SI and amylosucrase, which is closely related to GH family 13 amylases, indicated that the two enzymes share a similar transglycosylation mechanism via a glycosyl-enzyme intermediate in subsite − 1. On the other hand, novel structural features were revealed in subsites + 1 and + 2 of GTF-SI. Trp517 provided the platform for glycosyl acceptor binding, while Tyr430, Asn481 and Ser589, which are conserved in family 70 enzymes but not in family 13 enzymes, comprised subsite + 1. Based on the structure of GTF-SI and amino acid comparison of GTF-SI, GTF-I and GTF-S, Asp593 in GTF-SI appeared to be the most critical point for acceptor sugar orientation, influencing the transglycosylation specificity of GSases, that is, whether they produced insoluble glucan with α(1-3) glycosidic linkages or soluble glucan with α(1-6) linkages. The structural information derived from the current study should be extremely useful in the design of novel inhibitors that prevent the biofilm formation by GTF-SI.  相似文献   

15.
α-L-Rhamnosidase (EC 3.2.1.40) catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides. Bacillus sp. GL1 α-L-rhamnosidase (RhaB), a member of glycoside hydrolase (GH) family 78, is responsible for degrading the bacterial biofilm gellan, and also functions as a debittering agent for citrus fruit in the food and beverage industries through the release of rhamnose from plant glycoside, naringin. The X-ray crystal structure of RhaB was determined by single-wavelength anomalous diffraction using a selenomethionine derivative and refined at 1.9 Å resolution with a final R-factor of 18.2%. As is seen in the homodimeric form of the active enzyme, the structure of RhaB in crystal packing is a homodimer containing 1908 amino acids (residues 3-956), 43 glycerol molecules, four calcium ions, and 1755 water molecules. The overall structure consists of five domains, four of which are β-sandwich structures designated as domains N, D1, D2, and C, and an (α/α)6-barrel structure designated as domain A. Structural comparison by DALI showed that RhaB shares its highest level of structural similarity with chitobiose phosphorylase (Z score of 25.3). The structure of RhaB in complex with the reaction product rhamnose (inhibitor constant, Ki = 1.8 mM) was also determined and refined at 2.1 Å with a final R-factor of 19.5%. Rhamnose is bound to the deep cleft of the (α/α)6-barrel domain, as is seen in the clan-L GHs. Several negatively charged residues, such as Asp567, Glu572, Asp579, and Glu841, conserved in GH family 78 enzymes, interact with rhamnose, and RhaB mutants of these residues have drastically reduced enzyme activity, indicating that the residues are crucial for enzyme catalysis and/or substrate binding. To our knowledge, this is the first report on the determination of the crystal structure of α-L-rhamnosidase and identification of its clan-L (α/α)6-barrel as a catalytic domain.  相似文献   

16.
Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2)   总被引:1,自引:0,他引:1  
Acyl-CoA thioesterases (ACOTs) catalyze the hydrolysis of CoA esters to free CoA and carboxylic acids and have important functions in lipid metabolism and other cellular processes. Type I ACOTs are found only in animals and contain an α/β hydrolase domain, through currently no structural information is available on any of these enzymes. We report here the crystal structure at 2.1 Å resolution of human mitochondrial ACOT2, a type I enzyme. The structure contains two domains, N and C domains. The C domain has the α/β hydrolase fold, with the catalytic triad Ser294-His422-Asp388. The N domain contains a seven-stranded β-sandwich, which has some distant structural homologs in other proteins. The active site is located in a large pocket at the interface between the two domains. The structural information has significant relevance for other type I ACOTs and related enzymes.  相似文献   

17.
This is the first report on the formation of a complex between zinc α2-glycoprotein (ZAG) and prolactin-inducible protein (PIP). The complex was purified from human seminal plasma and crystallized using 20% polyethylene glycol 9000 and 5% hexaethylene glycol. The structure of the complex has been determined using X-ray crystallographic method and refined to an Rcryst of 0.199 (Rfree = 0.239). The structure of ZAG is broadly similar to the structure of serum ZAG. The scaffolding of PIP consists of seven β-strands that are organized in the form of two antiparallel β-pleated sheets, resulting in the formation of a sandwiched β-sheet. The amino acid sequence of PIP contains one potential N-glycosylation site at Asn77, and the same is found glycosylated with four sugar residues. The structure of the complex shows that the β-structure of PIP is ideally aligned with the β-structure of domain α3 of ZAG to form a long interface between two proteins. The proximal β-strands at the long interface are arranged in an antiparallel manner. There are 12 hydrogen bonds and three salt bridges between ZAG and PIP. At the two ends of vertical interface, two salt bridges are formed between pairs of Lys41-Asp233 and Lys68-Glu229. On the perpendicular interface involving α1-α2 domains of ZAG and a loop of PIP, another salt bridge is formed. The internal space at the corner of the L-shaped structure is filled with solvent molecules including a carbonate ion. The overall buried area in the complex is approximately 914 Å2, which is considerably higher than the 660 Å2 reported for the class I major histocompatibility complex structures.  相似文献   

18.
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E > 200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E > 200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75 Å and 2.04 Å, respectively, showed that both proteins have a canonical α/β hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other α/β hydrolase fold esterases.  相似文献   

19.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) was used to convert dodecyl-β-maltoside (DDM) to dodecyl-β-maltooctaoside (DDMO) using α-cyclodextrin (α-CD) or starch as glycosyl donors. At 300 mM α-CD, varied DDM concentration and 60 °C, the reaction obeyed Michaelis-Menten kinetics with a Km value of 18 mM and a Vmax value of 100 U/mg enzyme. However, at 25 mM α-CD the reaction rate decreased with increasing DDM concentration (5-50 mM), and when the α-CD concentration was varied at fixed DDM concentration an S shaped curve was obtained. The deviations from Michaelis-Menten kinetics were interpreted as being caused by formation of inclusion complexes between α-CD and DDM and by micellation of DDM. To achieve a high reaction rate, a high concentration of free α-CD is necessary, since α-CD in the form of a complex has low reactivity. When starch is used as glycosyl donor in the CGTase catalyzed alkyl glycoside elongation reaction, it is thus important to choose reaction conditions under which the cyclization of starch to α-CD is efficient.  相似文献   

20.
Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号