首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.  相似文献   

2.
Formation of spider silk from its constituent proteins—spidroins—involves changes from soluble helical/coil conformations to insoluble β-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation. The spidroin N-terminal domain (NT) undergoes stable dimerization and structural changes in this pH region, but the underlying mechanisms are incompletely understood. Here, we determine the NMR and crystal structures of Euprosthenops australis NT mutated in the dimer interface (A72R). Also, the NMR structure of wild‐type (wt) E. australis NT at pH 7.2 and 300 mM sodium chloride was determined. The wt NT and A72R structures are monomers and virtually identical, but they differ from the subunit structure of dimeric wt NT mainly by having a tryptophan (W10) buried between helix 1 and helix 3, while W10 is surface exposed in the dimer. Wedging of the W10 side chain in monomeric NT tilts helix 3 approximately 5–6 Å into a position that is incompatible with that of the observed dimer structure. The structural differences between monomeric and dimeric NT domains explain the tryptophan fluorescence patterns of NT at pH 7 and pH 6 and indicate that the biological function of NT depends on conversion between the two conformations.  相似文献   

3.
The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes.  相似文献   

4.
Zhou C  Leng B  Yao J  Qian J  Chen X  Zhou P  Knight DP  Shao Z 《Biomacromolecules》2006,7(8):2415-2419
Spider dragline silk with its superlative tensile properties provides an ideal system to study the relationship between morphology and mechanical properties of a structural protein. Accordingly, we synthesized two hybrid multiblock copolymers by condensing poly(alanine) [(Ala)(5)] blocks of the structural proteins (spidroin MaSp1 and MaSp2) of spider dragline silk with different oligomers of isoprene (2200 and 5000 Da) having reactive end groups. The synthetic multiblock polymer displayed similar secondary structure to that of natural spidroin, the peptide segment forming a beta-sheet structure. These multiblock polymers showed a significant solubility in the component solvents. Moreover, the copolymer which contains the short polyisoprene segment would aggregate into a micellar-like structure, as observed by TEM.  相似文献   

5.
Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks.  相似文献   

6.
With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae). We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.  相似文献   

7.
Two unique spidroins are present in the silk of the Amazon mygalomorph spider — Avicularia juruensis (Theraphosidae), and for the first time the presence and expression of a major ampullate spidroin 2-like in Mygalomorphae are demonstrated. Molecular analysis showed the presence of (GA)n, poly-A and GPGXX motifs in the amino acid sequence of Spidroin 2, the last being a motif described so far only in MaSp2 and Flag spidroins. Phylogenetic analysis confirmed the previously known orthologous silk gene clusters, and placed this gene firmly within the orbicularian MaSp2 clade. Gene tree–species tree reconciliations show a pattern of multiple gene duplication throughout spider silk evolution, and pinpoint the oldest speciation in which MaSps must have been present in spiders on the mygalomorph–araneomorph split, 240 MYA. Therefore, while not refuting orb weaver monophyly, MaSp2s, and major ampullate silks in general cannot be classified as orbicularian synapomorphies, but have to be considered plesiomorphic for Opisthothelae. The evidence presented here challenges the simplified notion that mygalomorphs spin only one kind of silk, and adds to the suite of information suggesting a pattern of early niche diversification between Araneomorphae and Mygalomorphae. Additionally, mygalomorph MaSp2-like might accommodate mechanical demands arising from the arboreal habitat preference of Avicularia.  相似文献   

8.
9.
The dragline silk of orb-weaving spiders possesses extremely high tensile strength and elasticity. To date, full-length sequences of only two genes encoding major ampullate silk protein (MaSp) in Latrodectus hesperus have been determined. In order to further understand this gene family, we utilized in this study a variety of strategies to isolate full-length MaSp1 and MaSp2 cDNAs in the wasp spider Argiope bruennichi. A. bruennichi MaSp1 and MaSp2 are primarily composed of remarkably homogeneous ensemble repeats containing several complex motifs, and both have highly conserved C-termini and N-termini. Two novel amino acid motifs, GGF and SGR, were found in MaSp1 and MaSp2, respectively. Amino acid composition analysis of silk, luminal contents and predicted sequences indicates that MaSp1 and MaSp2 are two major components of major ampullate glands and that the ratio of MaSp1 to MaSp2 is approximately 3:2 in dragline silk. Furthermore, both the MaSp1:MaSp2 ratio and the conserved termini are closely linked with the production of high quality synthetic fibers. Our results make an important contribution to our understanding of major ampullate silk protein structure and provide a second blueprint for creating new composite silk which mimics natural spider dragline silk.  相似文献   

10.
Spider silks are spun from concentrated solutions of spidroin proteins. The appropriate timing of spidroin assembly into organized fibers must be highly regulated to avoid premature fiber formation. Chemical and physical signals presented to the silk proteins as they pass from the ampulle and through the tapered duct include changes in ionic environment and pH as well as the introduction of shear forces. Here, we show that the N-terminal domain of spidroins from the major ampullate gland (MaSp-NTDs) for both Nephila and Latrodectus spiders associate noncovalently as homodimers. The MaSp-NTDs are highly pH-responsive and undergo a structural transition in the physiological pH range of the spider duct. Tryptophan fluorescence of the MaSp-NTDs reveals a change in conformation when pH is decreased, and the pH at which the transition occurs is determined by the amount and type of salt present. Size exclusion chromatography and pulldown assays both indicate that the lower pH conformation is associated with a significantly increased MaSp-NTD homodimer stability. By transducing the duct pH signal into specific protein-protein interactions, this conserved spidroin domain likely contributes significantly to the silk-spinning process. Based on these results, we propose a model of spider silk assembly dynamics as mediated through the MaSp-NTD.  相似文献   

11.
蜘蛛大壶状腺丝蛋白基因的克隆和原核表达   总被引:2,自引:0,他引:2  
以悦目金蛛(Argiope amoena)丝腺SMARTRACEcDNA文库为模板进行RT-PCR,克隆了1条大壶状腺丝蛋白(major ampullate spidroin,MaSp)基因cDNA序列。该条cDNA序列编码的氨基酸序列可区分为两部分(1)富含丙氨酸的片段和富含甘氨酸的片段相间排列构成的重复氨基酸序列区,并且富含甘氨酸的片段中有脯氨酸分布;(2)约100个氨基酸残基组成的C末端非重复氨基酸序列区。把MaSp基因cDNA序列亚克隆到质粒pET28b( )中,构建原核表达质粒pET28b( )-MaSp,表达质粒转化大肠杆菌BL21(DE3),用IPTG诱导表达。SDS-PAGE、氨基酸组成测定和N末端氨基酸序列测定的结果表明,表达产物为重组MaSp,表达量约为40mg/L。还对C末端非重复氨基酸序列对重组MaSp在水媒介中溶解性的影响进行了探讨。  相似文献   

12.
Spider silk has been extensively studied for its outstanding mechanical properties. Partial intermediate and C-terminal sequences of different spider silk proteins have been determined, and during the past decade also N-terminal domains have been characterized. However, only some of these N-terminal domains have been reported to contain signal peptides, leaving the mechanism whereby they enter the secretory pathway open to speculation. Here we present the sequence of a 394-residue N-terminal region of the Euprosthenops australis major ampullate spidroin 1 (MaSp1). A close comparison with published sequences from other species revealed the presence of N-terminal signal peptides followed by an approximately 130-residue nonrepetitive domain. From secondary structure predictions, helical wheel analysis, and circular dichroism spectroscopy this domain is concluded to contain five alpha-helices and is a conserved constituent of hitherto analyzed dragline, flagelliform, and cylindriform spider silk proteins.  相似文献   

13.
Blamires SJ  Wu CL  Tso IM 《PloS one》2012,7(2):e31626

Background

It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved.

Methodology/Principal Findings

We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species'' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake.

Conclusions

Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics.  相似文献   

14.
Fibroins serve as the major building blocks of silk fiber. As the major component of fibroin, the fibroin heavy chain is a considerably large protein comprising N-terminal and C-terminal hydrophilic domains and 12 highly repetitive Gly-Ala-rich regions flanked by internal hydrophilic blocks. Here, we show the crystal structure of the fibroin N-terminal domain (FibNT) at pH?4.7, revealing a remarkable double-layered anti-parallel β-sheet with each layer comprising two FibNT molecules entangled together. We also show that FibNT undergoes a pH-responsive conformational transition from random coil to β-sheets at around pH?6.0. Dynamic light scattering demonstrates that FibNT tends to oligomerize as pH decreases to 6.0, and electron microscopy reveals micelle-like oligomers. Our results are consistent with the micelle assembly model of silk fibroin and, more importantly, show that the N-terminal domain in itself has the capacity to form micelle-like structures in response to pH decrease. Structural and mutagenesis analyses further reveal the important role of conserved acidic residues clustered in FibNT, such as Glu56 and Asp100, in preventing premature β-sheet formation at neutral pH. Collectively, we suggest that FibNT functions as a pH-responsive self-assembly module that could prevent premature β-sheet formation at neutral pH yet could initiate fibroin assembly as pH decreases along the lumen of the posterior silk gland to the anterior silk gland.  相似文献   

15.
Three conserved aspartyl residues located in the putative transmembrane helices in the Tn10-encoded metal-tetracycline/H+ antiporter were replaced by Asn, Lys, or Glu with oligonucleotide-directed site-specific mutagenesis. Replacement of Asp84 or Asp15 by Asn or Lys caused a severe defect in tetracycline transport activity, however, the Glu84 and Glu15 mutants retained 150 and 40% of the wild type activity, respectively, indicating the critical role of the negative charge. The increase in the activity of the Glu84 mutant was due to an increase in the affinity for the substrate. H+/tetracycline coupling was intact in these mutants, including Asn and Lys mutants. On the other hand, all of the Asp285-substitution mutants showed a severe defect in tetracycline transport activity and a complete lack of tetracycline-coupled H+ transport. However, since in vivo tests showed the tetracycline resistance for the Glu285 mutant, a negative charge in position 285 plays some role in maintaining the possible down-hill and/or low affinity efflux of accumulated tetracycline from intact cells. Similar work was done for Asp365, and here the Asn and Glu mutants showed decreased but high activity, while the Lys mutant was only marginally active (5%), indicating that a negative charge is not so demanding in position 365, possibly because it is not in the membrane.  相似文献   

16.
Koide A  Jordan MR  Horner SR  Batori V  Koide S 《Biochemistry》2001,40(34):10326-10333
It is generally considered that electrostatic interactions on the protein surface, such as ion pairs, contribute little to protein stability, although they may play important roles in conformational specificity. We found that the tenth fibronectin type III domain of human fibronectin (FNfn10) is more stable at acidic pH than neutral pH, with an apparent midpoint of transition near pH 4. Determination of pK(a)'s for all the side chain carboxyl groups of Asp and Glu residues revealed that Asp 23 and Glu 9 have an upshifted pK(a). These residues and Asp 7 form a negatively charged patch on the surface of FNfn10, with Asp 7 centrally located between Asp 23 and Glu 9, suggesting repulsive electrostatic interactions among these residues at neutral pH. Mutant proteins, D7N and D7K, in which Asp 7 was replaced with Asn and Lys, respectively, exhibited a modest but significant increase in stability at neutral pH, compared to the wild type, and they no longer showed pH dependence of stability. The pK(a)'s of Asp 23 and Glu 9 in these mutant proteins shifted closer to their respective unperturbed values, indicating that the unfavorable electrostatic interactions have been reduced in the mutant proteins. Interestingly, the wild-type and mutant proteins were all stabilized to a similar degree by the addition of 1 M sodium chloride at both neutral and acidic pH, suggesting that the repulsive interactions between the carboxyl groups cannot be effectively shielded by 1 M sodium chloride. These results indicate that repulsive interactions between like charges on the protein surface can destabilize a protein, and protein stability can be significantly improved by relieving these interactions.  相似文献   

17.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D140XD142XE144 sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced kcat and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with kcat, indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

18.
为明确蛛丝蛋白NT结构域的生物学功能,首次研究了MiSp NT结构域在不同pH条件下的二聚化动力学及二级结构特性. 基于蛛丝蛋白MiSp全长编码基因,克隆并分别在BL21(DE3)和Rosetta-gami 2(DE3)中重组表达MiSp NT结构域: BL21(DE3)表达水平较高,约35 mg/L LB培养基,表达产物需经短暂超声和2 mol/L尿素促溶;Rosetta-gami 2(DE3)表达产物可溶性较好,但表达水平仅为BL21 (DE3) 一半左右. 融合蛋白经凝血酶介导的2次Ni-NTA纯化,纯度达到95%以上. Trp 荧光光谱分析表明,MiSpNT在pH为7.0左右时开始二聚化,pH5.7时二聚体为主要构象,pHT约为6.6. MiSp NT在pH 7.5,6.5和5.5条件下的CD图谱相似,均主要为α-helix,表明NT二聚化与二级结构水平的变化没有直接联系. 本研究为进一步探索蛛丝蛋白NT结构域的结构和功能以及成丝机理提供线索.  相似文献   

19.
Spiders spin a functionally diverse array of silk fibers, each composed of one or more unique proteins. Most of these proteins, in turn, are encoded by members of a single gene family thought to have arisen through duplication and divergence of an ancestral silk gene. Because of its remarkable mechanical properties, orb weaver dragline silk, a composite of 2 proteins (MaSp1 and MaSp2), is the best studied. Here, we demonstrate that multiple loci encode MaSp1 in widow spiders (Latrodectus). Because these copies may be the result of more recent duplication events than those leading to the currently recognized silk gene paralogs, they offer insight into the early evolutionary fate of silk gene duplicates. In addition to 3 presumed functional MaSp1 loci in Latrodectus hesperus (Western black widow) and Latrodectus geometricus (brown widow) genomes, we find a MaSp1 pseudogene in L. hesperus, demonstrating the potential for unrecognized extinction of silk gene paralogs. We also document recombination events among L. hesperus MaSp1 loci and between Latrodectus MaSp1 loci and MaSp2. This result supports the hypothesis that concerted evolution occurs not only within an individual silk gene but also among silk gene paralogs. One of the L. geometricus MaSp1 copies encodes a protein that has diverged in amino acid composition and potentially converged on the secondary structure of MaSp2. Based on the presence of multiple MaSp1 loci and the phylogenetic distribution of MaSp1 versus MaSp2, we propose that MaSp2 is derived from an ancestral MaSp1 duplicate. Finally, divergence has occurred in the upstream flanking sequences of the L. hesperus MaSp1 loci, the region most likely to contain regulatory motifs, providing ample opportunity for differential expression. However, the benefits associated with increased protein production may be the primary mechanism maintaining multiple functional MaSp1 copies in widow genomes.  相似文献   

20.
The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentapeptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = Y/S or A/A, respectively. Post-fiber processing involved similar drawing ratios (2-2.5×) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. Nuclear magnetic resonance indicated that the fraction of β-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. X-ray diffraction showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif re-design impacted protein self-assembly mechanisms and requirements for fiber formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号