首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We used extensive molecular dynamics simulations of these five PrP mutants to compare their dynamics and conformations to those of the wild type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases.  相似文献   

2.

Background

Prion diseases are associated with a conformational switch for PrP from PrPC to PrPSc. Many genetic mutations are linked with prion diseases, such as mutations T188K/R/A with fCJD.

Scope of review

MD simulations for the WT PrP and its mutants were performed to explore the underlying dynamic effects of T188 mutations on human PrP. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of PrP, including the shift of H1, the elongation of native β-sheet and the conversion of S2-H2 loop to a 310 helix.

Major conclusions

Our present study indicates that the three mutants for PrP may undergo different pathogenic mechanisms and the realistic atomistic simulations can provide insights into the effects of disease-associated mutations on PrP dynamics and stability, which can enhance our understanding of how mutations induce the conversion from PrPC to PrPSc.General significanceOur present study helps to understand the effects of T188K/R/A mutations on human PrP: despite the three pathogenic mutations almost do not alter the native structure of PrP, but perturb its stability. This instability may further modulate the oligomerization pathways and determine the features of the PrPSc assemblies.  相似文献   

3.
The conversion of the cellular form of the prion protein (PrPC) to an abnormal, alternatively folded isoform (PrPSc) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies.In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.  相似文献   

4.
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.  相似文献   

5.
Chin Jung Cheng 《朊病毒》2014,8(1):125-135
Prion diseases are caused by misfolding and aggregation of the prion protein (PrP). Pathogenic mutations such as Y218N and E196K are known to cause Gerstmann-Sträussler-Scheinker syndrome and Creutzfeldt-Jakob disease, respectively. Here we describe molecular dynamics simulations of these mutant proteins to better characterize the detailed conformational effects of these sequence substitutions. Our results indicate that the mutations disrupt the wild-type native PrPC structure and cause misfolding. Y218N reduced hydrophobic packing around the X-loop (residues 165–171), and E196K abolished an important wild-type salt bridge. While differences in the mutation site led PrP mutants to misfold along different pathways, we observed multiple traits of misfolding that were common to both mutants. Common traits of misfolding included: 1) detachment of the short helix (HA) from the PrP core; 2) exposure of side chain F198; and 3) formation of a nonnative strand at the N-terminus. The effect of the E196K mutation directly abolished the wild-type salt bridge E196-R156, which further destabilized the F198 hydrophobic pocket and HA. The Y218N mutation propagated its effect by increasing the HB-HC interhelical angle, which in turn disrupted the packing around F198. Furthermore, a nonnative contact formed between E221 and S132 on the S1-HA loop, which offered a direct mechanism for disrupting the hydrophobic packing between the S1-HA loop and HC. While there were common misfolding features shared between Y218N and E196K, the differences in the orientation of HB and HC and the X-loop conformation might provide a structural basis for identifying different prion strains.  相似文献   

6.
The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrPC) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrPC-fold, and it contains a 310-helical β2-α2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20 °C. With this “rigid‐loop PrPC” behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I β-turn β2-α2 loop structure. When compared to other rigid‐loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8 °C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrPC conformation and their implications for the PrPC physiological function.  相似文献   

7.
Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states.

Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages.

This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.  相似文献   

8.
The nature of the factors leading to the conversion of the cellular prion protein (PrP(C)) into its amyloidogenic isoform (PrP(Sc)) is still matter of debate in the field of structural biology. The NMR structures of non-mammalian PrP(C) (non-mPrP) from frog, chicken and turtle [Calzolai, L., Lysek, D.A., Perez, D.R., Guntert, P. and Wuthrich, K. (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc. Natl. Acad. Sci. USA 102, 651-655] have provided some new and valuable information on the scaffolding elements that preserve the PrP(C) folding, despite their low sequence identity with the mammalian prions (mPrP). The present molecular dynamics study of non-mPrP(C) focuses on the hydration properties of these proteins in comparison with the mammalian ones. The data reveal new insights in the PrP hydration and focus on the implications for PrP(C) folding stability and its propensity for interactions. In addition, for the first time, a role in disfavoring the PrP(C) aggregation is suggested for a conserved beta-bulge which is stabilized by the local hydration.  相似文献   

9.
朊粒蛋白PrP~(Sc)寡聚体的形成与跨膜毒性   总被引:1,自引:0,他引:1  
朊粒蛋白(prionprotein,PrP)传染致病机制一直是朊粒(prion)研究领域的焦点.由正常型朊粒蛋白(PrPC)向致病型朊粒蛋白(PrPSc)的转变是致病的关键步骤.本文综述了近年来PrPC向PrPSc转变的结构变化特征、PrPSc由单体形成寡聚体的组装机制、以及PrPSc寡聚体的跨膜机制与细胞毒性间的关系等方面的研究进展.  相似文献   

10.
In prion diseases, the posttranslational modification of host-encoded prion protein PrPc yields a high β-sheet content modified protein PrPsc, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrPc to PrPsc. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs—ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity.  相似文献   

11.
Pathogenesis of transmissible spongiform encephalopathies is correlated with a conversion of the normal cellular form of the prion protein (PrPC) into the abnormal isoform (scrapie form of PrP). Contact of the normal PrP with its abnormal isoform, the scrapie form of PrP, induces the transformation. Knowledge of molecules that inhibit such contacts leads to an understanding of the mechanism of the aggregation, and these molecules may serve as leads for drugs against transmissible spongiform encephalopathies. Therefore, we screened a synthetic octapeptide library of the globular domain of the human PrPC for binding affinity to PrPC. Two fragments with binding affinity, 149YYRENMHR156 and 153NMHRYPNQ160, were identified with Kd values of 21 and 25 μM, respectively. A 10-fold excess of peptide 153NMHRYPNQ160 inhibits aggregation of the PrP by 99%. NMR and mass spectrometry showed that the binding region of the peptide 153NMHRYPNQ160 is located at helix 3 of the PrP.  相似文献   

12.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

13.
Abnormalities in Stress Proteins in Prion Diseases   总被引:1,自引:0,他引:1  
1. Prion diseases include kuru, Creutzfeldt–Jakob disease (CJD), Gerstmann–Sträussler–Scheinker disease (GSS), and fatal familia insomnia (FFI) of humans, as well as scrapie and bovine spongiform encephalopathy (BSE) of animals.2. All these disorders involve conversion of the normal, cellular prion protein (PrPC) into the corresponding scrapie isoform (PrPSc). PrPC adopts a structure rich in -helices and devoid of -sheet, in contrast to PrPSc, which has a high -sheet content and is resistant to limited digestion by proteases. That a conformational transition features in the conversion of PrPC into PrPSc implies that prion diseases are disorders of protein conformation.3. This concept has been extended by our studies with heat shock proteins (Hsp), many of which are thought to function as molecular chaperones. We found that the induction of some Hsps but not others was profoundly altered in scrapie-infected cells and that the distribution of Hsp73 is unusual in these cells.4. Whether the conversion of PrPC into PrPSc is assisted by molecular chaperones, or if the accumulation of the abnormally folded PrPSc is complexed with Hsps remains to be established.  相似文献   

14.
In prion diseases cellular prion protein (PrPC) undergoes conformational transition into the β-sheet-rich form (PrPSc). PrPC consists of the disordered N-terminal part and a C-terminal globular domain containing three α-helices (H1, H2, H3) and an antiparallel beta sheet (B1, B2). B2–H2 loop, which has a focal role in the species barrier, contains the highest density of asparagine (N) and glutamine (Q) residues in the whole sequence. Q/N-rich domains are essential for the conversion of yeast prions. We investigated the role of Q/N residues in the B2–H2 loop in PrP conversion. We prepared mouse PrP mutants with increasing number of consecutive Q/N residues in the B2–H2 loop. Stability of the mutants decreased with the increasing number of inserted glutamines. In vitro conversion of mutants yielded fibrils of similar morphology as the wild-type PrP. Q/N mutants accelerated fibrillization in comparison to the wild-type PrP, with mutant containing the most glutamines having the shortest lag phase. The effect of Q/N residues was specific for the B2–H2 loop and was not due to simple increase in flexibility as the introduction of Gly-Ser or Ala residues slowed the conversion despite their decreased stability. Our results thus suggest that Q/N residues in the B2–H2 loop of PrP promote protein conversion and may represent a link to conversion of Q/N-rich prions.  相似文献   

15.
The recent introduction of bank vole (Clethrionomys glareolus) as an additional laboratory animal for research on prion diseases revealed an important difference when compared to the mouse and the Syrian hamster, since bank voles show a high susceptibility to infection by brain homogenates from a wide range of diseased species such as sheep, goats, and humans. In this context, we determined the NMR structure of the C-terminal globular domain of the recombinant bank vole prion protein (bvPrP) [bvPrP(121-231)] at 20 °C. bvPrP(121-231) has the same overall architecture as other mammalian PrPs, with three α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other mammalian species in that the loop connecting the second β-strand and helix α2 is precisely defined at 20 °C. This is similar to the previously described structures of elk PrP and the designed mouse PrP (mPrP) variant mPrP[S170N,N174T](121-231), whereas Syrian hamster PrP displays a structure that is in-between these limiting cases. Studies with the newly designed variant mPrP[S170N](121-231), which contains the same loop sequence as bvPrP, now also showed that the single-amino-acid substitution S170N in mPrP is sufficient for obtaining a well-defined loop, thus providing the rationale for this local structural feature in bvPrP.  相似文献   

16.
It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-Å meridional X-ray diffraction typical for amyloid cross-β-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of β-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-β-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 °C, only local unfolding was revealed, while individual state-specific cross-β features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-β-structure. Both S- and R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.  相似文献   

17.
Individual variations in structure and morphology of amyloid fibrils produced from a single polypeptide are likely to underlie the molecular origin of prion strains and control the efficiency of the species barrier in the transmission of prions. Previously, we observed that the shape of amyloid fibrils produced from full-length prion protein (PrP 23-231) varied substantially for different batches of purified recombinant PrP. Variations in fibril morphology were also observed for different fractions that corresponded to the highly pure PrP peak collected at the last step of purification. A series of biochemical experiments revealed that the variation in fibril morphology was attributable to the presence of miniscule amounts of N-terminally truncated PrPs, where a PrP encompassing residue 31-231 was the most abundant of the truncated polypeptides. Subsequent experiments showed that the presence of small amounts of recombinant PrP 31-231 (0.1-1%) in mixtures with full-length PrP 23-231 had a dramatic impact on fibril morphology and conformation. Furthermore, the deletion of the short polybasic N-terminal region 23-30 was found to reduce the folding efficiency to the native α-helical forms and the conformational stability of α-PrP. These findings are very surprising considering that residues 23-30 are very distant from the C-terminal globular folded domain in α-PrP and from the prion folding domain in the fibrillar form. However, our studies suggest that the N-terminal polybasic region 23-30 is essential for effective folding of PrP to its native cellular conformation. This work also suggests that this region could regulate diversity of prion strains or subtypes despite its remote location from the prion folding domain.  相似文献   

18.
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC) into scrapie prion protein (PrPSc) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site‐selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.  相似文献   

19.
The pathogenic isoform (PrP(Sc) ) of the host-encoded normal cellular prion protein (PrP(C) ) is believed to be the infectious agent of transmissible spongiform encephalopathies. Spontaneous conversion of α-helix-rich recombinant PrP into the PrP(Sc) -like β-sheet-rich form or aggregation of cytosolic PrP has been found to be accelerated under reducing conditions. However, the effect of reducing conditions on PrP(Sc) -mediated conversion of PrP(C) into PrP(Sc) has remained unknown. In this study, the effect of reducing conditions on the binding of bacterial recombinant mouse PrP (MoPrP) with PrP(Sc) and the conversion of MoPrP into proteinase K-resistant PrP (PrP(res) ) using a cell-free conversion assay was investigated. High concentrations of dithiothreitol did not inhibit either the binding or conversion reactions of PrP(Sc) from five prion strains. Indeed, dithiothreitol significantly accelerated mouse-adapted BSE-seeded conversion. These data suggest that conversion of PrP(Sc) derived from a subset of prion strains is accelerated under reducing conditions, as has previously been shown for spontaneous conversion. Furthermore, the five prion strains used could be classified into three groups according to their efficiency at binding and conversion of MoPrP and cysteine-less mutants under both reducing and nonreducing conditions. The resulting classification is similar to that derived from biological and biochemical strain-specific features.  相似文献   

20.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrPTSE). PrPTSE pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrPTSE on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrPTSE isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号