首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
Selenocysteine (Sec) incorporation is an essential process required for the production of at least 25 human selenoproteins. This unique amino acid is co-translationally incorporated at specific UGA codons that normally serve as termination signals. Recoding from stop to Sec involves a cis-acting Sec insertion sequence element in the 3′ untranslated region of selenoprotein mRNAs as well as Sec insertion sequence binding protein 2, Sec-tRNASec, and the Sec-specific elongation factor, eEFSec. The interplay between recoding and termination at Sec codons has served as a focal point in researching the mechanism of Sec insertion, but the role of translation initiation has not been addressed. In this report, we show that the cricket paralysis virus intergenic internal ribosome entry site is able to support Sec incorporation, thus providing evidence that the canonical functions of translation initiation factors are not required. Additionally, we show that neither a 5′ cap nor a 3′ poly(A) tail enhances Sec incorporation. Interestingly, however, the presence of the internal ribosome entry site significantly decreases Sec incorporation efficiency, suggesting a role for translation initiation in regulating the efficiency of UGA recoding.  相似文献   

2.
Selenoproteins are an essential and unique group of proteins in which selenocysteine (Sec) is incorporated in response to a stop codon (UGA). Reprograming of UGA for Sec insertion in eukaryotes requires a cis-acting stem–loop structure in the 3′ untranslated region of selenoprotein mRNA and several trans-acting factors. Together these factors are sufficient for Sec incorporation in vitro, but the process is highly inefficient. An additional challenge is the synthesis of selenoprotein P (SELENOP), which uniquely contains multiple UGA codons. Full-length SELENOP expression requires processive Sec incorporation, the mechanism for which is not understood. In this study, we identify core coding region sequence determinants within the SELENOP mRNA that govern SELENOP synthesis. Using 75Se labeling in cells, we determined that the N-terminal coding sequence (upstream of the second UGA) and C-terminal coding sequence context are two independent determinants for efficient synthesis of full-length SELENOP. In addition, the distance between the first UGA and the consensus signal peptide is also critical for efficiency.  相似文献   

3.
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.  相似文献   

4.
Lu C  Qiu F  Zhou H  Peng Y  Hao W  Xu J  Yuan J  Wang S  Qiang B  Xu C  Peng X 《FEBS letters》2006,580(22):5189-5197
Selenoprotein K (SelK) is a newly identified selenoprotein. We showed that selenium incorporation into SelK was dependent on the 3'UTR of SelK mRNA. Sec insertion sequence (SECIS) RNA binding assays demonstrated that human SBP2 bound to the SelK SECIS element through the conserved non-Watson-Crick base pair quartet but not the AAT motif. Examination of the expression pattern revealed that human SelK mRNA was highly expressed in heart. Immunofluorescence analysis showed that SelK localized to the endoplasmic reticulum. Using SelK recombinant adenovirus, we found that overexpression of SelK attenuated the intracellular reactive oxygen species level and protected cells from oxidative stress-induced toxicity in cardiomyocytes. Our findings indicated that SelK is a novel antioxidant in cardiomyocytes and is related to the regulation of cellular redox balance.  相似文献   

5.
Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.  相似文献   

6.
Human thioredoxin reductase (hTrxR) is a homodimeric flavoprotein crucially involved in the regulation of cellular redox reactions, growth and differentiation. The enzyme contains a selenocysteine residue at its C-terminal active site that is essential for catalysis. This redox center is located on a flexible arm, solvent-exposed and reactive towards electrophilic inhibitors, thus representing a target for antitumor drug development. During catalysis reducing equivalents are transferred from the cofactor NADPH to FAD, then to the N-terminal active site cysteine residues and from there to the flexible C-terminal part of the other subunit to be finally delivered to a variety of second substrates at the molecule's surface. Here we report the first crystal structure of hTrxR1 (Sec-->Cys) in complex with FAD and NADP(+) at a resolution of 2.8 A. From the crystals three different conformations of the carboxy-terminal arm could be deduced. The predicted movement of the arm is facilitated by the concerted action of the three side-chain residues of N418, N419 and W407, which act as a guiding bar for the C-terminal sliding process. As supported by previous kinetic data, the three visualized conformations might reflect different stages in enzymatic catalysis. Comparison with other disulfide reductases including human glutathione reductase revealed specific inhibitor binding sites in the intersubunit cavity of hTrxR that can be exploited for structure-based inhibitor development.  相似文献   

7.
8.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号