首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility that some factor in serum changes the substrate specificity of purified human plasma carboxyl esterase, which hydrolyzes the short chain fatty acid ester, tributyrin, was investigated. The purified carboxyl esterase from human plasma hydrolyzed 48 mmol of tributyrin/mg of protein/h, monoolein at 1560 mumol of released fatty acids/mg of protein/h, diolein at 133 mumol of released fatty acids/mg of protein/h, and triolein at less than 10 mumol of released fatty acids/mg of protein/h. When human serum was applied to phenyl-Sepharose, a triolein hydrolysis-promoting factor (THPF) for purified carboxyl esterase was bound to the gel and was eluted with water. This partially purified human serum THPF enhanced carboxyl esterase-catalyzed triolein hydrolysis about 30-fold, diolein hydrolysis 2-fold, and monoolein hydrolysis 1.5-fold. Hydrolysis of triolein in very low density lipoproteins (d less than 1.006) and intermediate lipoproteins (1.006 less than d less than 1.019) by carboxyl esterase was also enhanced by addition of THPF. THPF activity was reduced by treatment of delipidation, but resistant to trypsin treatment or heating at 50 degrees C. These results indicated that serum carboxyl esterase can hydrolyze the long chain fatty acid ester, triolein, in the presence of triolein hydrolysis-promoting factor in serum.  相似文献   

2.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

3.
The substrate specificities of the phospholipase and triglyceridase activities of purified rat liver hepatic lipase were compared using lipid monolayers so that the substrates were presented to the enzyme in a controlled physical state. The rate of hydrolysis of 14C-labeled lipid at constant surface pressure in the presence of hepatic lipase and fatty acid-free bovine serum albumin at 33 degrees C was determined by monitoring the decrease of surface radioactivity. In monolayers of sphingomyelin/cholesterol (2:1, mol/mol) containing either 1 mol% triacylglycerol, 1 mol% phosphatidylethanolamine, or 10 and 20 mol% phosphatidylcholine, hepatic lipase clearly showed a preference for unsaturated over saturated lipids. In addition, with a sphingomyelin/cholesterol (2:1) monolayer containing 1 mol% of lipid substrate, hepatic lipase showed the following preference: triolein = dioleoylphosphatidylethanolamine much greater than dioleoylphosphatidylcholine; the respective rates of hydrolysis were 15.3 +/- 1.2, 14.9 +/- 0.8, and 0.5 +/- 0.1 mumol fatty acid produced/h per mg hepatic lipase. Overall, it appears that when comparing rates of hydrolysis of molecules within a given lipid class, hydrocarbon chain interactions are important. However, when comparing different lipid classes such as phosphatidylcholines and phosphatidylethanolamines, it is apparent that the polar group has a significant influence on the rate of hydrolysis. The rate of [14C]triolein hydrolysis, when mixed at surface concentrations of up to 2 mol% in a sphingomyelin/cholesterol (2:1) monolayer, was significantly faster than when triolein was present in a 1-oleyl-2-palmitylphosphatidylcholine monolayer; the rates of hydrolysis were 47.7 +/- 5.4 and 8.9 +/- 0.8 mumol fatty acid produced/h per mg hepatic lipase, respectively. The monolayer physical state and the miscibility of the substrate in the inert matrix influence the presentation of the substrate to the enzyme, thereby affecting the hydrolysis rate.  相似文献   

4.
Fractionation of pancreatic juice by heparin-Sepharose and cholate-Sepharose affinity chromatography indicated that pancreatic carboxylesterase can be separated from pancreatic lipase with the former retained and the latter unretained by both columns. The chromatographic behavior of pancreatic carboxylesterase was found to be similar to that of human milk bile salt-activated lipase. The partially purified pancreatic carboxylesterase had a specific activity of 30 mumol/min per mg protein when assayed with p-nitrophenyl acetate. The reaction mechanism of human pancreatic carboxylesterase was studied using p-nitrophenyl acetate as substrate and taurocholate as activator. The reaction of the enzyme was found to follow a rapid-equilibrium random mechanism. Because of the presence of basal activity, the role of taurocholate can be considered as a non-essential activator and the dissociation constant for the enzyme-taurocholate binary complex was determined to be 0.20 mM. The activation effect of taurocholate consists in increasing the affinity of the enzyme to the substrate (5.6-fold) and in increasing the Vmax (2.3-fold). Based on the kinetic property of human pancreatic carboxylesterase and human milk bile salt-activated lipase with p-nitrophenyl acetate, cholesterol oleate and triolein as substrate, we conclude that they share common substrate specificity but show minor differences in kinetic parameters. Fluorescence studies indicated that both enzymes showed a decreased intrinsic tryptophanyl fluorescence upon incubation with taurocholate. This indicates that bile salt caused a conformational change of the enzymes, with a resultant decreased hydrophobicity in the microenvironment of tryptophan residues.  相似文献   

5.
Carboxylesterase was obtained from human liver in an electrophoretically homogeneous form. The monomeric molecular weight of the enzyme was 60,000 and the enzyme associated to form trimers. Purified human liver carboxylesterase was compared with human serum carboxylesterase, purified earlier. Serum carboxylesterase hydrolyzed a typical cholinesterase substrate and aryl acylamide, whereas liver carboxylesterase did not hydrolyze these compounds. Both carboxylesterases catalyzed the hydrolysis of short-chain triacylglycerols, such as tributyrin, and medium-chain monoacylglycerols, such as monocaprin, but not the hydrolysis of long-chain triacylglycerols. Serum carboxylesterase activity was inhibited by p-trimethylammoniumanilinium dichloride and neostigmine, whereas liver carboxylesterase activity was not affected by these compounds. Liver and serum carboxylesterase activities were both strongly inhibited by phenylmethylsulfonyl fluoride.  相似文献   

6.
5 alpha-Cholest-8(14)-en-3 beta-yl-15-one oleate (15-ketosteryl oleate), the oleate ester of a compound with the capacity to lower serum cholesterol, was effectively hydrolyzed by partially purified porcine pancreatic cholesterol esterase with an apparent Km of 0.28 +/- 0.01 mM and a Vmax of 0.62 +/- 0.01 mumol/min per mg protein compared to an apparent Km of 0.19 +/- 0.02 mM and a Vmax of 0.37 +/- 0.02 mumol/min per mg protein for cholesteryl oleate. The 15-ketosteryl oleate was also hydrolyzed by highly purified rat pancreatic cholesterol esterase with an apparent Km of 0.20 +/- 0.01 mM and a Vmax of 86.7 +/- 3.0 mumol/min per mg protein compared to an apparent Km of 0.43 +/- 0.01 mM and a Vmax of 119.8 +/- 2.6 mumol/min per mg protein for cholesteryl oleate. 15-Ketosteryl oleate is, therefore, a good substrate for pancreatic cholesterol esterase from either source. The 15-ketosterol is a weak competitive inhibitor of partially purified porcine pancreatic cholesterol esterase when cholesteryl oleate is the substrate.  相似文献   

7.
The hydrolysis of long-chain monoester of ethanediol by rat,liver subcellular fractions was investigated in order to define the carboxylic acid ester hydrolase involved and to localize the enzymic activity. We found that with 1-O-hexadecanoyl [U-14C]ethanediol as substrate, hydrolytic activity was foremost associated with the rough microsomal fraction. The pH optimum occurred at 8.5. The apparent Km and V values were 6.5 . 10(-4) M and 13 mumol/h per mg microsomal protein, respectively. Enzymic activity was inhibited by p-chloromercuribenzoate and by diisopropylfluorophosphate, whereas NaF was less effective and CaCl2 did not affect apparent activity. Amongst a number of carboxylic acid esters tested as substrate, only long-chain 1-acyl and 2-acyl glycerols inhibited acyl diol hydrolysis competitively (Ki approximately 0.9 mM). It was concluded that long-chain monoesters of ethanediol are hydrolyzed by the monoacyl glycerol lipase system associated with the rat liver microsomal fraction. Because diol monoester is also utilized by the cholinephosphotransferase system of liver to form highly lytic acyl diol phosphocholines, efficient diol monoester hydrolysis by monoglyceride lipase may be a significant step in regulating acyl diol phosphocholine levels in biological systems.  相似文献   

8.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

9.
The lipase purified from Pseudomonas fragi 22.39 B hydrolyzed not only triglycerides but also synthetic esters such as Tween, Span and methyl oleate. Of the saturated monoacid triglycerides tested, tributyrin was hydrolyzed most quickly. The lipase did not produce 1,3-diolein as a hydrolysis product from triolein. The addition of the Ca2+ ion to the reaction mixture promoted the hydrolysis rate for triglycerides and monoesters with longer-chain fatty acids (C14, C16, C18). The enzyme could hydrolyze various kinds of natural fats and oils, and the extent their hydrolysis reached above 90%.  相似文献   

10.
R E Purdy  P E Kolattukudy 《Biochemistry》1975,14(13):2832-2840
The properties of the homogeneous cutinase I, cutinase II, and the nonspecific esterase isolated from the extracellular fluid of cutin-grown Fusarium solani F. pisi (R.E. Purdy and P.E. Kolattukudy (1975), Biochemistry, preceding paper in this issue) were investigated. Using tritiated apple cutin as substrate, the two cutinases showed similar substrate concentration dependence, protein concentration dependence, time course profiles, and pH dependence profiles with optimum near 10.0. Using unlabeled cutin, the rate of dihydroxyhexadecanoic acid release from apple fruit cutin by cutinase I was determined to be 4.4 mumol per min per mg. The cutinases hydrolyzed methyl hexadecanoate, cyclohexyl hexadecanoate, and to a much lesser extent hexadecyl hexadecanoate but not 9-hexadecanoyloxyheptadecane, cholesteryl hexadecanoate, or hexadecyl cinnamate. The extent of hydrolysis of these model substrates by cutinase I was at least three times that by cutinase II. The nonspecific esterase hydrolyzed all of the above esters except hexadecyl cinnamate, and did so to a much greater extent than did the cutinases. None of the enzymes hydrolyzed alpha- or beta-glucosides of p-nitrophenol. p-Nitrophenyl esters of fatty acids from C2 through C18 were used as substrates and V's and Kms were determined...  相似文献   

11.
Lipoprotein lipase (LPL), a key enzyme which initiates the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins, consists of multiple functional domains which are necessary for normal activity. The catalytic domain of LPL mediates the esterase function of the enzyme but separate lipid binding sites have been proposed to be involved in the interaction of LPL with emulsified lipid substrates at the water-lipid interface. Like pancreatic lipase (PL), LPL contains a surface loop covering the catalytic pocket that may modulate access of the substrate to the active site of the enzyme. Secondary structural analysis of this loop reveals a helix-turn-helix motif with two short amphipathic helices that have hydrophobic moments of 0.64 and 0.68. In order to investigate the role of the loop in the initial interaction of LPL with its substrate, we utilized site-directed mutagenesis to generate eight constructs in which the amphipathic properties of the loop were altered and expressed them in human embryonal kidney-293 cells. Reducing the amphiphilicity without changing the predicted secondary structure of the loop abolished the ability of the lipase to hydrolyze emulsified, long chain fatty acid triglycerides (triolein) but not the water soluble substrate tributyrin. Replacing the loop of LPL with the loop of hepatic lipase, which differs in 15 of 22 amino acids but is also amphiphilic, led to the expression of an enzyme that retained both triolein and tributyrin hydrolyzing activity. Substitution of the LPL loop by a short four amino acid peptide, which may allow more direct access to the active site than the 22 amino acid loop, enhanced hydrolysis of short chain fatty acid triglycerides by more than 2-fold, while the ability to hydrolyze emulsified substrates was abolished. Thus, disruption of the amphipathic structure of the LPL loop selectively decreases the hydrolysis of emulsified lipid substrate without affecting the esterase or catalytic function of the enzyme. These studies establish that the loop with its two amphipathic helices is essential for hydrolysis of long chain fatty acid substrate by LPL providing new insight into the role of the LPL loop in lipid-substrate interactions. We propose that the interaction between the lipoprotein substrates and the amphipathic helices within this loop may in part determine lipase substrate specificity.  相似文献   

12.
Isolation and Characterization of a Staphylococcal Lipase   总被引:1,自引:1,他引:0       下载免费PDF全文
A number of coagulase-negative staphylococci isolated from human skin were found to produce lipase. Lipolytic activity appeared in the growth medium during the stationary phase of growth but did not appear as a result of autolysis of the cells. Maximal lipase synthesis was obtained when the medium was adjusted to pH 7.5 before inoculation. The purified enzyme hydrolyzed tributyrin and tridecanoin most actively, and a relatively high rate of hydrolysis of triolein was also noted. The optimal activity of the purified lipase was at pH 7.5. The characteristics of the concentrated crude enzyme and purified lipase were compared.  相似文献   

13.
The triacylglycerol hydrolyase and phospholipase A1 activities of bovine milk lipoprotein lipase toward long-chain fatty acyl ester substrates were investigated with monomolecular lipid films containing trioleoylglycerol and phosphatidylcholine. In a monolayer of egg phosphatidylcholine containing 3 mol% [14C]trioleoylglycerol, and in the presence of apolipoprotein C-II, a 79 amino acid activator protein for lipoprotein lipase, enzyme activity was maximal at a surface pressure of 21-22 mN X m-1 (37 mumol oleic acid released/h per mg enzyme); enzyme activity was enhanced 9-fold by apolipoprotein C-II. At surface pressures between 22 and 30 mN X m-1, lipoprotein lipase activity decreased over a broad range and was nearly zero at 30 mN X m-1. Apolipoprotein C-II and the synthetic fragments of the activator protein containing residues 56-79, 51-79 and 44-79 were equally effective at 20 mN X m-1 in enhancing lipoprotein lipase catalysis. However, at surface pressures between 25 and 29 mN X m-1, only apolipoprotein C-II and the phospholipid-associating fragment containing residues 44-79 enhanced enzyme catalysis. The effect of apolipoprotein C-II and synthetic peptides on the phospholipase A1 activity of lipoprotein lipase was examined in sphingomyelin:cholesterol (2:1) monolayers containing 5 mol% di[14C]myristoylphosphatidylcholine. At 22 mN X m-1, apolipoprotein C-II and the synthetic fragments containing residues 44-79 or 56-79 enhanced lipoprotein lipase activity (70-80 nmol/h per mg enzyme). In contrast to trioleoylglycerol hydrolysis, the synthetic fragments were not as effective as apolipoprotein C-II enhancing enzyme activity towards di[14C]myristoylphosphatidylcholine at higher surface pressures. We conclude that the minimal amino acid sequence of apolipoprotein C-II required for activation of lipoprotein lipase is dependent both on the lipid substrate and the packing density of the monolayer.  相似文献   

14.
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.  相似文献   

16.
Ascorbic acid 2-sulphate has a stability in acid comparable to that of phenyl sulphate and is rather more acid-labile than simple carbohydrate sulphates. At its optimum pH of 4.8 sulphatase A(aryl-sulphate sulphohydrolase EC 3.1.6.1.) hydrolyses ascorbic acid sulphate with a specific activity of 90 mumol/mg per min (150 mumol/mg per min with nitrocatechol sulphate at pH 5.6). At pH 4.8 the kinetics are non-Michaelis. At pH 5.6 Michaelis kinetics are obeyed and Km 12 21 mM ascorbic acid 2-sulphate. K2SO4 is a competitive inhibitor with a Ki of 0.2 and 0.6 mM at pH 4.8 and 5.6, respectively. Sulphatase A is converted into a substrate-modified form during its hydrolysis of ascorbic acid sulphate. Sulphatase B also hydrolyses ascorbic acid 2-sulphate. At pH 4.8 and in the presence of 0.15 M NaCl the specific activity is 0.92 mumol/mg per min (90 mumol/mg per min for nitrocatechol sulphate at pH 5.6). In the absence of NaCl the activity is greatly decreased. Km is 8 mM. K2SO4 is a competitive inhibitor with a Ki of 0.1 mM. Ascorbic acid is not hydrolysed at a detectable rate by the arylsulphatases of the mollusc Dicathais orbita or of Aerobacter aerogenes.?  相似文献   

17.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were purified to homogeneity from human postheparin plasma. Molecular, catalytic and immunological properties of the purified enzymes were investigated. The native molecular weights of LPL and HTGL were 67,200 and 65,500, respectively, by gel chromatography. The subunit molecular weights of LPL and HTGL were 60,600 and 64,600, respectively, suggesting that these enzymes are catalytically active in a monomeric form. In addition, the purified LPL and HTGL each gave a single protein band when they were detected as glycoproteins with a probe of concanavalin A. The purified enzyme preparations were free of detectable antithrombin III by Western blot analysis. Catalytic properties of the purified enzymes were examined using triolein-gum arabic emulsion and triolein particles stabilized with phospholipid monolayer as substrates. LPL catalyzed the complete hydrolysis of triolein to free oleate and monooleate in the presence of apolipoprotein C-II. Apparent Km values for triolein and apolipoprotein C-II were 1.0 mM and 0.6 microM, and Vmax was 40.7 mmol/h per mg. HTGL hydrolyzed triolein substrate at a rate much slower than LPL, and produced mainly free oleate with little monooleate. Apparent Km and Vmax values were 2.5 mM and 16.1 mmol/h per mg, respectively. Polyclonal antibodies were developed against the purified LPL and HTGL. The purity and specificity of these antisera were ascertained by immunotitration, Ouchterlony double diffusion and Western blot analyses. The anti-human LPL and anti-human HTGL antiserum specifically reacted with the corresponding either native or denaturated enzyme, indicating that two enzymes were immunologically distinct. We developed an assay system for LPL and HTGL in human PHP by selective immunoprecipitation of each enzyme with the corresponding antiserum.  相似文献   

18.
Han X  Yang J  Cheng H  Yang K  Abendschein DR  Gross RW 《Biochemistry》2005,44(50):16684-16694
Diabetic cardiomyopathy is characterized by excessive utilization of fatty acid substrate, diminished glucose transport, and mitochondrial dysfunction. However, the chemical mechanisms linking altered substrate utilization to mitochondrial dysfunction are unknown. Herein, we use shotgun lipidomics and multidimensional mass spectrometry to identify dramatic decreases in the critical mitochondrial inner membrane lipid, cardiolipin, in diabetic murine myocardium (from 7.2 +/- 0.3 nmol/mg of protein in control hearts to 3.1 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Moreover, the direct metabolic precursor of cardiolipin, phosphatidylglycerol, was also substantially depleted (2.5 +/- 0.2 nmol/mg of protein in control hearts vs 1.3 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Similarly, glycerol 3-phosphate, necessary for the penultimate step in phosphatidylglycerol production, decreased by 58% in diabetic myocardium (from 4.9 +/- 0.9 to 2.2 +/- 0.3 nmol/mg of protein; n = 4). Since Barth's syndrome (a disorder of cardiolipin metabolism) induces mitochondrial dysfunction and cardiomyopathy, and since decreases in cardiolipin content precipitate mitochondrial dysfunction, these results provide a unifying hypothesis linking altered substrate utilization and metabolic flux in diabetic myocardium with altered lipid metabolism, cardiolipin depletion, mitochondrial dysfunction, and resultant hemodynamic compromise.  相似文献   

19.
Triolein particles stabilized by a phosphatidylcholine monolayer were used to study the lipoprotein lipase (LpL) reaction. They were prepared in two different sizes and with triolein and phosphatidylcholine in the molar ratios of 0.9-1.2 : 1 (small particles) and 8-17 : 1 (large particles). The rate of hydrolysis by LpL of phosphatidylcholine on the surface of both lipid particles was only 1/20 as much as that of triolein, even if it was activated to the maximum by apolipoprotein C-II (apoC-II). Thus, the phospholipase activity of LpL was low enough to measure the initial rate of hydrolysis of triolein without causing a gross change of the surface of the lipid particle. When the hydrolysis of triolein by LpL was monitored, fatty acid was released at a constant rate until all of the triolein molecules were hydrolyzed. The enzyme required 220 +/- 17 and 66 +/- 9 nM apoC-II for its half-maximal activity (Km (apoC-II] with small and large particles as a substrate (1.15 mM triolein for small and 2.13 mM triolein for large particles), respectively, using various concentrations of LpL. The Km(apoC-II) values for these two substrates became similar when LpL activity was analyzed with respect to the density of apoC-II on the phosphatidylcholine monolayer at the surface of the particles (bound apoC-II/phosphatidylcholine). The concentration of substrate particles did not affect the Km(apoC-II) values. The presence of an adequate amount of apoC-II increased the maximal activity of LpL (Vmax(triolein)) from 0.48 +/- 0.21 to 6.81 +/- 0.45 and from 0.32 +/- 0.04 to 7.13 +/- 0.64 mmol/h/mg with a slight decrease in the apparent Michaelis constant (Km(triolein)) for small (from 90 to 54 microM triolein) and large (from 1.00 to 0.65 mM triolein) particles, respectively. Although the apparent Km for triolein in large particles was about ten times greater than that in small particles, the values became similar when they were corrected for the concentration of phosphatidylcholine (50-100 microM phosphatidylcholine), which corresponded to the surface area of the substrate particles. It was suggested that bound apoC-II molecules were transferred relatively slowly to other lipid particles while LpL molecules moved rapidly among the lipid particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Radiolabeled cholesteryl oleate, when incorporated into phospholipid vesicles, was hydrolyzed at acid pH by an enzyme present in rabbit aortic homogenates. In contrast, cholesteryl oleate presented as an acetone dispersion was not effectively hydrolyzed at acid pH under identical conditions. Using the vesicle preparation as substrate, a sensitive assay system for the acid hydrolase was developed in which hydrolysis was proportional to protein concentration and incubation time, and was independent of substrate concentration. The physical state of the vesicles was apparently not altered by the assay conditions, and no hydrolysis of the vesicle-associated phospholipid was detected. Acid cholesterol esterase activity in atherosclerotic aortic tissue was 2.5-fold greater than that of control tissue, and even greater increases were observed in the activities of other lysosomal enzymes (N-acetyl-beta-d-glucosaminidase and beta-glucuronidase). Glucose-6-phosphatase activity was also increased in aortas from cholesterol-fed animals while 5' nucleotidase activity remained unchanged. Labeled triolein also was incorporated into phospholipid vesicles and was hydrolyzed by an acid lipase in aortic tissue. Similarities between triolein and cholesteryl oleate hydrolysis existed with respect to pH optimum and the effect of cholesterol feeding on activity, suggesting that a single enzyme may hydrolyze both lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号