首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natal dispersal is a fundamental component of the ecology and evolutionary history of birds, yet is often prohibitively difficult to study. We characterized natal dispersal for the first time in a bird using molecular genetic parentage analyses in a tropical rainforest understory species, the chestnut‐backed antbird (Thamnophilidae: Myrmeciza exsul). Median natal dispersal distance was ~800 m (mean = 931 ± 84 (SE) m, n = 48), with ~90% of all distances < 1500 m. We found no evidence of sex‐biased dispersal. An index of self‐recruitment (i.e. individuals establishing a territory within the population of origin) was higher in sites largely or entirely surrounded by non‐forest, suggesting birds are reluctant to disperse out of preferred forest habitat. Via simulations, we confirmed that the genetic data had sufficient resolution to correctly identify parent‐offspring dyads, but lacked resolution to identify other relationships (full‐sib and half‐sib) with confidence. Chestnut‐backed antbirds have measurable self‐recruitment rates caused by short natal dispersal distances, and self‐recruitment may be amplified by reluctance to disperse out of sites bordered by non‐forest. Some tropical forest understory birds have naturally short dispersal distances, and our results have implications for understanding how species will be affected by fragmented landscapes and for the design of reserves.  相似文献   

2.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

3.
Studies on the population biology of the chestnut blight fungus, Cryphonectria parasitica, have previously been carried out with dominant restriction fragment length polymorphism (RFLP) fingerprinting markers. In this study, we describe the development of 11 codominant markers from randomly amplified polymorphic DNAs (RAPDs). RAPD fragments were cloned and sequenced, and polymerase chain reaction (PCR) primers were designed flanking insertions/deletions. Primers labelled with fluorescent dyes were combined in multiplex reactions to assay five or six loci simultaneously in a capillary sequencing system. These codominant markers have the potential to complement RFLP methods for studying C. parasitica.  相似文献   

4.
In order to study the biogeography and population genetic structure of the obligate river‐island species Thamnophilus cryptoleucus (Thamnophilidae) we isolated four microsatellite loci. Number of alleles ranged from six to 11, heterozygosities from 60% to 89%, and individual populations were found in Hardy–Weinberg equilibrium. Cross‐species amplification of the loci was tested in eight species of the family Thamnophilidae and all loci successfully amplified in five or more related species.  相似文献   

5.
Aim We examined patterns of spatial and temporal diversification of the Amazonian endemic chestnut‐tailed antbird, Mymeciza hemimelaena (Thamnophilidae), to evaluate the diversification of a widespread avian taxon across rivers that potentially represent major natural barriers. Location Lowland Amazonia. Methods Sequences of the mitochondrial ND2 and cytochrome b genes were investigated from 65 individuals distributed throughout the entire range of M. hemimelaena, and including the two currently valid subspecies M. h. hemimelaena and M. h. pallens. Based on a combination of phylogeographic tools, molecular dating, and population genetic methods, we reconstructed a spatio‐temporal scenario of diversification of M. hemimelaena in the Amazon. Results The data revealed three genetically divergent and monophyletic groups in M. hemimelaena, which can also be distinguished by a combination of morphological and vocal characters. Two of these clades correspond to the previously described taxa M. h. hemimelaena and M. h. pallens, which are separated by the upper Madeira River, a main Amazonian tributary. The third clade is distributed between the middle reaches of the Madeira River and the much smaller tributaries Jiparaná and Aripuanã, and, although currently treated as M. h. pallens, clearly constitutes an independent evolutionary lineage probably deserving separate species status. Molecular clock and population genetic analyses indicate that diversification in this group occurred throughout the Pleistocene, with demographic fluctuations assumed for M. h. hemimelaena and M. h. pallens. Main conclusions The findings implicate rivers as barriers driving diversification in the M. hemimelaena complex. Levels of mitochondrial DNA divergence and associated morphological and vocal traits support its division into at least three separate species with comparatively small ranges. The existence of a previously unrecognized lineage in the M. hemimelaena complex, and the high degree of population structuring found in M. h. hemimelaena underscore the pervasiveness of cryptic endemism throughout Amazonia and the importance of DNA‐based taxonomic and phylogeographic studies in providing the accurate estimates of diversity that are essential for conservation planning.  相似文献   

6.
Primers for 16 microsatellite loci were developed for the trumpeter swan (Cygnus buccinator), a species recovering from a recent population bottleneck. In a screen of 158 individuals, the 16 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although two loci repeatedly revealed significant departures from Hardy–Weinberg equilibrium. Amplification in the closely related tundra swan (Cygnus columbianus) was successful for all except one locus. These microsatellite loci will be applicable for population genetic analyses and ultimately aid in management efforts.  相似文献   

7.
Microsatellite loci were characterized in the walking catfish, Clarias macrocephalus, random clones from a small genomic library using a (GT)15 probe. Primers for DNA amplifications using polymerase chain reaction (PCR) were designed and synthesized for 23 loci. Twelve loci were polymorphic, with the number of alleles ranging from two to 13 alleles per locus. Developed microsatellite primers should prove useful for population studies and genetic mapping of the walking catfish.  相似文献   

8.
The aim of this study was to determine the allele frequency of the glycogen synthase 1 (GYS1) mutation associated with polysaccharide storage myopathy type 1 in the Austrian Noriker horse. Furthermore, we examined the influence of population substructures on the allele distribution. The study was based upon a comprehensive population sample (208 breeding stallions and 309 mares) and a complete cohort of unselected offspring from the year 2014 (1553 foals). The mean proportion of GYS1 carrier animals in the foal cohort was 33%, ranging from 15% to 50% according to population substructures based on coat colours. In 517 mature breeding horses the mutation carrier frequency reached 34%, ranging on a wider scale from 4% to 62% within genetic substructures. We could show that the occurrence of the mutated GYS1 allele is influenced by coat colour; genetic bottlenecks; and assortative, rotating and random mating strategies. Highest GYS1 carrier frequencies were observed in the chestnut sample comprising 50% in foals, 54% in mares and 62% in breeding stallions. The mean inbreeding of homozygous carrier animals reached 4.10%, whereas non‐carrier horses were characterized by an inbreeding coefficient of 3.48%. Lowest GYS1 carrier frequencies were observed in the leopard spotted Noriker subpopulation. Here the mean carrier frequency reached 15% in foals, 17% in mares and 4% in stallions and inbreeding decreased from 3.28% in homozygous non‐carrier horses to 2.70% in heterozygous horses and 0.94% in homozygous carriers. This study illustrates that lineage breeding and specified mating strategies result in genetic substructures, which affect the frequencies of the GYS1 gene mutation.  相似文献   

9.
Biogeographic barriers potentially restrict gene flow but variation in dispersal or vagility can influence the effectiveness of these barriers among different species and produce characteristic patterns of population genetic structure. The objective of this study was to investigate interspecific and intraspecific genetic structure in two closely related species that differ in several life‐history characteristics. The grey teal Anas gracilis is geographically widespread throughout Australia with a distribution that crosses several recognized biogeographic barriers. This species has high vagility as its extensive movements track broad‐scale patterns in rainfall. In contrast, the closely related chestnut teal A. castanea is endemic to the mesic southeastern and southwestern regions of Australia and is more sedentary. We hypothesized that these differences in life‐history characteristics would result in more pronounced population structuring in the chestnut teal. We sequenced five nuclear loci (nuDNA) for 49 grey teal and 23 chestnut teal and compared results to published mitochondrial DNA (mtDNA) sequences. We used analysis of molecular variance to examine population structure, and applied coalescent based approaches to estimate demographic parameters. As predicted, chestnut teal were more strongly structured at both mtDNA and nuDNA (ΦST= 0.163 and 0.054, respectively) than were grey teal (ΦST < 0.0001 for both sets of loci). Surprisingly, a greater proportion of the total genetic variation was partitioned among populations within species (ΦSC= 0.014 and 0.047 for nuDNA and mtDNA, respectively) than between the two species (ΦCT < 0.0001 for both loci). The ‘Isolation with Migration’ coalescent model suggested a late Pleistocene divergence between the taxa, but remarkably, a deeper divergence between the southeastern and southwestern populations of chestnut teal. We conclude that dispersal potential played a prominent role in the structuring of populations within these species and that divergent selection associated with ecology and life history traits likely contributed to rapid and recent speciation in this pair.  相似文献   

10.
Primers for five polymorphic nuclear DNA (nDNA) markers and one mitochondrial DNA (mtDNA) gene (COI) were developed for the Australian wood cockroach Panesthia australis using a range of techniques. Eight mitochondrial haplotypes and four to 36 alleles per nuclear locus were detected in 744 cockroaches. Observed heterozygosity ranged from 0.117 to 0.816 in a sample of 30 animals from one population. The markers will be useful for population biology and for the measurement of the effects of habitat fragmentation on this ecologically important forest‐dependent species.  相似文献   

11.
In order to study the genetic diversity and structure in the population of Vitellaria paradoxa, we characterized eight polymorphic microsatellite loci. Primers to amplify these loci were tested on 169 individual trees representing a sample of the population of shea tree in Mali. The loci were all polymorphic with a number of alleles between three to nine and with observed level of heterozygosity ranging from 0.035 to 0.507. These markers will be useful for genetic and ecological studies of this species.  相似文献   

12.
The American chestnut (Castanea dentata (Marshall) Borkh.), once a major component of eastern forests from Maine to Georgia, was functionally removed from the forest ecosystem by chestnut blight (an exotic fungal disease caused by Cryphonectria parasitica (Murr.) Barr), first identified at the beginning of the twentieth century. Hybrid‐backcross breeding programs that incorporate the blight resistance of Chinese chestnut (Castenea mollissima Blume) and Japanese chestnut (Castenea crenata Sieb. & Zuc.) into American chestnut stock show promise for achieving the blight resistance needed for species restoration. However, it is uncertain if limitations in tissue cold tolerance within current breeding programs might restrict the restoration of the species at the northern limits of American chestnut's historic range. Shoots of American chestnut and hybrid‐backcross chestnut (i.e., backcross chestnut) saplings growing in two plantings in Vermont were tested during November 2006, February 2007, and April 2007 to assess their cold tolerance relative to ambient low temperatures. Shoots of two potential native competitors, northern red oak (Quercus rubra L.) and sugar maple (Acer saccharum L.), were also sampled for comparison. During the winter, American and backcross chestnuts were approximately 5°C less cold tolerant than red oak and sugar maple, with a tendency for American chestnut to be more cold tolerant than the backcross chestnut. Terminal shoots of American and backcross chestnut also showed significantly more freezing damage in the field than nearby red oak and sugar maple shoots, which showed no visible injury.  相似文献   

13.
The evolutionary divergence of mating signals provides a powerful basis for animal speciation. Divergence in sympatry strengthens reproductive isolation, and divergence in allopatry can reduce or eliminate gene flow between populations on secondary contact. In birds, the first of these processes has empirical support, but the second remains largely hypothetical. This is perhaps because most studies have focused on oscine passerines, whose song learning ability may reduce the influence of vocalizations in reproductive isolation. In suboscine passerines, the role of learning in song development is thought to be minimal, and the resultant signals are relatively fixed. To investigate the role of song in the early stages of peripatric speciation, we therefore studied a suboscine, the chestnut‐tailed antbird Myrmeciza hemimelaena. We recorded male songs in a natural forest island (isolated for < 3000 years) at the southern fringe of Amazonia, and at two nearby sites in continuous forest. A previous study found the isolated population to be weakly differentiated genetically from the ancestral population suggesting that peripatric speciation was underway. In support of this, although we detected minor but significant differences in song structure between each site, the most divergent songs were those of island birds. On simulating secondary contact using playback, we found that pairs from the forest island responded more strongly to island (i.e. local) songs than to those from both non‐island sites, and vice versa. This pattern was not observed in pairs from one non‐island site, which responded with equal strength to local songs and songs from the other non‐island site. Island females were more likely to approach and sing after hearing local male songs, rather than songs from the non‐island populations, and vice versa; non‐island females did not appear to discriminate between local songs and those from the other non‐island site. These findings are consistent with the idea that vocal divergence arising in small populations at the edge of Amazonia may result in partial reproductive isolation when contact is resumed. They also suggest the possibility that song divergence in peripatry may, after much longer time‐frames, act as a barrier to gene flow in suboscines, perhaps because of an inability to learn or recognize divergent songs on secondary contact. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 173–188.  相似文献   

14.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

15.
Tetra and tri‐nucleotide microsatellite loci were isolated from a parthenogenetic form of the Australian lizard Menetia greyii, using an enrichment method with polymerase chain reaction (PCR)‐based colony screening. Primers for 23 loci were designed and 11 of these loci amplified well in a panel of 10 parthenogenetic individuals from a single population. Seven loci were further characterized and six successfully amplified and were polymorphic in all five sexual species of the Menetia greyii complex they were tested in. These loci will be used to investigate the parental ancestry and clonal diversity of various parthenogenetic forms within the Menetia greyii species complex.  相似文献   

16.
Biotechnology offers a new approach for the restoration of tree species affected by exotic pathogens; however, nontarget impacts of this novel strategy on other organisms have not been comprehensively assessed. We evaluated the effect of transgenic American chestnut (Castanea dentata) leaf litter on the growth and survival of larval wood frogs (Lithobates sylvaticus), a forest‐dwelling amphibian species widely sympatric with American chestnut, that forage almost entirely on periphyton and litter detritus that accumulate in temporary vernal pools in forests. We reared wood frog larvae on Castanea leaf litter (American chestnut genetically engineered for blight tolerance, nontransgenic American chestnut, Chinese chestnut [Castanea mollissima], and an American–Chinese chestnut hybrid) and litter from two non‐Castanea, nontransgenic “control” tree species, coupled with two levels of supplementary food. We observed no differences in growth or survival of wood frog larvae reared on transgenic versus nontransgenic American chestnut leaves. Without supplementary food, wood frog larvae provided leaves from American chestnut (both types) developed faster and grew larger than those exposed to other leaf litter treatments. Results of this study provide preliminary evidence that (1) American chestnut may have formerly been an important source of food for forest‐dwelling amphibians and (2) transgenic American chestnut litter generated as part of chestnut restoration efforts is unlikely to present direct novel risks to developing amphibian larvae in the forest environment.  相似文献   

17.
The geographical distribution of existing populations of horse chestnut (Aesculus hippocastanum L.) in Europe is determined by past demographic events during the Quaternary. In the present study we evaluate the imprints that northward expansions originated from common ancestry at southern Europe may have left on the present patterns of genetic variation for horse chestnut across the continent. Genetic diversity and levels of population structure in a European south–north gradient, ranging from the Balkans to the Scandinavian Peninsula, were determined with Amplified Fragment Length Polymorphism (AFLP) markers in 159 loci. A family of rarefaction techniques for the estimation of gene diversity was used to exclude potential confounding effects as a result of the unequal sample sizes. The results indicate that northern populations are not more genetically depleted than southern populations, thus suggesting that diversity for this species is not correlated with latitudinal distribution. Detailed hypotheses based on prediction models for different historical events associated with human‐mediated spread of cultivation are examined for a better understanding of the current genetic patterns of regional differentiation.  相似文献   

18.
American chestnut (Castanea dentata [Marsh.] Borkh.) was once the dominant hardwood species in Eastern North America before an exotic fungal pathogen, Cryphonectria parasitica (Murrill) Barr, functionally eliminated it across its range. One promising approach toward restoring American chestnut to natural forests is development of blight‐tolerant trees using genetic transformation. However, transformation and related processes can result in unexpected and unintended phenotypic changes, potentially altering ecological interactions. To assess unintended tritrophic impacts of transgenic American chestnut on plant–herbivore interactions, gypsy moth (Lymantria dispar L.) caterpillars were fed leaf disks excised from two transgenic events, Darling 54 and Darling 58, and four control American chestnut lines. Leaf disks were previously treated with an LD50 dose of either the species‐specific Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) or the generalist pathogen Bacillus thuringiensis subsp. kurstaki (Btk). Mortality was quantified and compared to water blank controls. Tree genotype had a strong effect on the efficacies of both pathogens. Larval mortality from Btk‐treated foliage from only one transgenic event, Darling 54, differed from its isogenic progenitor, Ellis 1, but was similar to an unrelated wild‐type American chestnut control. LdMNPV efficacy was unaffected by genetic transformation. Results suggest that although genetic modification of trees may affect interactions with other nontarget organisms, this may be due to insertion effects, and variation among different genotypes (whether transgenic or wild‐type) imparts a greater change in response than transgene presence.  相似文献   

19.
Estimates of density and population size are fundamental in assessing population trends and ultimately in informing conservation management. Although the abundance of raptors is often expressed as indices of relative abundance, these can be poor correlates of absolute density. In 2008–2009, I calculated the absolute density and population size of Gray‐backed Hawks (Pseudastur occidentalis), an endangered species and Tumbesian endemic, using line transect counts in four different habitat types in a protected area in northwestern Peru. The absolute density of Gray‐backed Hawks in northwest Peru was estimated to be 0.65 individuals km?2, and the most suitable habitat for the species was located in the provinces of Manabí, Guayas, and Santa Elena in Ecuador, and Tumbes and Piura departments in Peru. The population of Gray‐backed Hawks in my study areas in Tumbes was estimated to be 136, with 94% occurring in dry deciduous and deciduous forest. Because ~60% of all detections in my study were made outside strictly protected areas, including the recently created Angostura‐Faical Regional Conservation Area, conservation of the remaining, non‐protected forests patches in Peru and Ecuador should be a high priority. The current global population of Gray‐backed Hawks has been estimated to be between 250 and 999 birds and declining due to ongoing habitat destruction and fragmentation. Small populations in small habitat fragments, like those in my study area, have high conservation potential, provided that populations are not isolated, and hence should be the focus of constant monitoring.  相似文献   

20.
Five microsatellite loci of Helicoverpa armigera were isolated from a partial genomic library screened by oligonucleotide probes. Primers were designed to detect allelic variability and heterozygosity in 60 individuals collected from different host species. All loci were found to be polymorphic, have 8–11 alleles with expected heterozygosity ranging from 0.81 to 0.88. Our results indicate that the five microsatellite loci could provide valuable markers for population genetic and ecological studies of the cotton bollworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号