首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For mammals with a polygynous mating system, dispersal is expected to be male‐biased. However, with the increase in empirical studies, discrepancies are arising between the expected and observed direction/extent of the bias in dispersal. In this study, we assessed sex‐biased dispersal in red deer (Cervus elaphus) on 13 estates from the Scottish Highlands. A total of 568 adult individuals were genotyped at 21 microsatellite markers and sequenced for 821 bp of the mitochondrial control region. Estimates of population structure with mitochondrial sequences were eight times larger than that obtained with microsatellite data (Fst′‐mt DNA = 0.831; Fst′‐micros = 0.096) indicating overall male‐biased dispersal in the study area. Comparisons of microsatellite data between the sexes indicated a predominance of male‐biased dispersal in the study area but values of FST and relatedness were only slighter larger for females. Individual‐based spatial autocorrelation analysis generated a similar pattern of relatedness across geographical distances for both sexes, with differences only significant at two distance intervals (25–30 and 70–112 km). Patterns of relatedness differed between estates, male biased‐dispersal was detected in eight estates but no sex‐biased dispersal was found in the remaining five. Neither population density nor landscape cover was found to be associated with the patterns of relatedness found across the estates. Differences in management strategies that could influence age structure, sex ratio and dispersal behaviour are proposed as potential factors influencing the relatedness patterns observed. This study provides new insights on dispersal of a strongly polygynous mammal at geographical scales relevant for management and conservation.  相似文献   

2.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

3.
Understanding dispersal behaviour and its determinants is critical for studies on life‐history maximizing strategies. Although many studies have investigated the causes of dispersal, few have focused on the importance of sibship, despite that sibling interactions are predicted to lead to intrafamilial differences in dispersal patterns. Using a large demographic data set from pre‐industrial Finland (= 9000), we tested whether the sex‐specific probability of dispersal depended on the presence of same‐sex or opposite‐sex elder siblings who can both compete and cooperate in the family. Overall, following our predictions, the presence of same‐sex elder siblings increased the probability of dispersal from natal population for both sexes, whereas the number of opposite‐sex siblings had less influence. Among males, dispersal was strongly linked to access to land resources. Female dispersal was mainly associated with competition over availability of mates but likely mediated by competition over access to wealthy mates rather mate availability per se. Besides ecological constraints, sibling interactions are strongly linked with dispersal decisions and need to be better considered in the studies on the evolution of family dynamics and fitness maximizing strategies in humans and other species.  相似文献   

4.
SSR (simple sequence repeats) markers derived from ESTs (expressed sequence tags), commonly called EST‐SSRs or genic SSRs provide useful genetic markers for crop improvement. These are easy and economical to develop as by‐products of large‐scale EST resources that have become available as part of the functional genomic studies in many plant species. Here, we describe for the first time, nine genic‐SSRs of coffee that are developed from the microsatellite containing ESTs from a cDNA library of moisture‐stressed leaves of coffee variety, ‘CxR’ (a commercial interspecific hybrid between Coffea congensis and Coffea canephora). The markers show considerable allelic diversity with PIC values up to 0.70 and 0.75 for Coffea arabica and Coffea canephora, respectively, and robust cross‐species amplification in 16 other related taxa of coffee. The validation studies thus demonstrate the potential utility of the EST‐SSRs for genetic analysis of coffee germplasm.  相似文献   

5.
Black locust (Robinia pseudoacacia) is an economically and ecologically important tree species in the world. We isolated seven polymorphic microsatellite loci from R. pseudoacacia using a dual‐suppression‐PCR technique. These loci provided microsatellite markers with high polymorphism ranging from three to 12 alleles per locus and expected heterozygosity between 0.538 and 0.944. The markers are now available for more detailed investigation of population genetic structure and pollen and seed dispersal.  相似文献   

6.
Predicting population colonisations requires understanding how spatio‐temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower‐density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual‐based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density‐dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade‐offs differ across life stages.  相似文献   

7.
Phylogeographical studies have shown that some shallow‐water marine organisms, such as certain coral reef fishes, lack spatial population structure at oceanic scales, despite vast distances of pelagic habitat between reefs and other dispersal barriers. However, whether these dispersive widespread taxa constitute long‐term panmictic populations across their species ranges remains unknown. Conventional phylogeographical inferences frequently fail to distinguish between long‐term panmixia and metapopulations connected by gene flow. Moreover, marine organisms have notoriously large effective population sizes that confound population structure detection. Therefore, at what spatial scale marine populations experience independent evolutionary trajectories and ultimately species divergence is still unclear. Here, we present a phylogeographical study of a cosmopolitan Indo‐Pacific coral reef fish Naso hexacanthus and its sister species Naso caesius, using two mtDNA and two nDNA markers. The purpose of this study was two‐fold: first, to test for broad‐scale panmixia in N. hexacanthus by fitting the data to various phylogeographical models within a Bayesian statistical framework, and second, to explore patterns of genetic divergence between the two broadly sympatric species. We report that N. hexacanthus shows little population structure across the Indo‐Pacific and a range‐wide, long‐term panmictic population model best fit the data. Hence, this species presently comprises a single evolutionary unit across much of the tropical Indian and Pacific Oceans. Naso hexacanthus and N. caesius were not reciprocally monophyletic in the mtDNA markers but showed varying degrees of population level divergence in the two nuclear introns. Overall, patterns are consistent with secondary introgression following a period of isolation, which may be attributed to oceanographic conditions of the mid to late Pleistocene, when these two species appear to have diverged.  相似文献   

8.
9.
We isolated seven microsatellite sequences from a library of recombinant clones in Rissa tridactyla (Laridae). We investigated their polymorphism in one population from France. Preliminary results indicate that these markers should prove valuable tools for the study of mating systems, population genetic structure and dispersal abilities in this seabird species. We present the results of cross‐species amplification for two seabird species: Uria aalge (Alcidae) and Stercorarius parasiticus (Stercorariidae). Some of the microsatellites isolated in R. tridactyla might be useful for studies on other seabird species.  相似文献   

10.
11.
Comparative studies of sympatric species that integrate both phylogeographical and population genetic approaches provide insight into how demographic events and life history traits shape adaptive potential and drive species persistence. Such studies are rare for species‐rich and strongly structured environments, especially those of the southern hemisphere. For two sympatric, perennial shrubs of the south‐west Western Australian semi‐arid zone, Grevillea globosa and Mirbelia sp. Bursarioides, we assessed historical and contemporary genetic diversity and structure, demographic processes and ratios of pollen to seed dispersal. Phylogeographical structure was not detected and haplotype networks were star‐like. Number of haplotypes, nucleotide diversity, haplotype diversity, and allelic diversity were statistically significantly lower for G. globosa than for M. sp. Bursarioides. Levels of haplotype divergence and more contemporary genetic divergence and expected heterozygosity were lower for G. globosa than for M. sp. Bursarioides, but differences were not statistically significant. Both species exhibited signals of isolation by distance and low pollen to seed dispersal ratios (5.26:1 and 6.88:1). Grevillea globosa displayed signals of historical and contemporary demographic expansion. Results imply an important role for aspects of seed ecology that impact population demography, as well as direct dispersal and a significant contribution of seed dispersal to genetic connectivity in a semi‐arid landscape.  相似文献   

12.
Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate‐driven trajectories even when local vital rates are climate dependent. We illustrated this using individual‐based data on a trans‐equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large‐scale climatic indices. We compared the population annual growth rate λi, estimated using local climate‐driven parameters with ρi, a population growth rate directly estimated from individual information and that accounts for immigration. While λi varied as a function of climatic variables, reflecting the climate‐dependent parameters, ρi did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate‐driven projections.  相似文献   

13.
Molecular methods are commonly used to investigate cryptic populations that are difficult to locate or observe directly. The population dynamics of many subterranean organisms have been overlooked, at least in part, as a result of the absence of appropriate molecular markers. Recent studies in African mole‐rats have raised questions about the modes of dispersal and mate acquisition. In the present study, we apply a suite of 25 microsatellite markers to test the overground/underground dispersal hypotheses. Using these data, we also apply an approach to estimate population size and look for signal of demographic expansion or contraction. The genetic data suggest that the same breeding population extends between locations (approximately 50 km), with elevated inbreeding coefficients suggestive of some degree of isolation of the urban location. Low genetic differentiation between study sites supports the proposed high levels of vagility of dispersing individuals overground. We find a signal of long‐term population decline of Bathyergus suillus in this region. Their adherence to mesic conditions potentially recommends B. suillus to be of utility in monitoring the proposed climate‐induced desiccation of the Western Cape. Of potential interest is the discovery of a second divergent population at the rural location, with microsatellite data suggesting contemporary reproductive isolation and a mitochondrial divergence putatively dated at approximately 0.6 Mya. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 890–897.  相似文献   

14.
We report on 52 microsatellite markers for use in Cronartium quercuum f.sp. fusiforme. The markers were developed from di‐, tri‐, and tetranucleotide repeat‐enriched genomic libraries. In 46 isolates collected from two natural populations in the southeastern USA, the number of alleles per locus ranged from two to 20 (mean 6.94) with gene diversity values ranging from 0.043 to 0.933 (mean 0.537). The markers should prove highly useful for genetic ‘fingerprinting’ of single‐spore isolates commonly used in host–pathogen gene interaction studies, as marker loci for linkage mapping studies, and for examining fine‐scale population genetic structure in natural populations of the fungus.  相似文献   

15.
Panicum coloratum var. makarikariense is a perennial C4 grass native to South Africa with relatively good forage production under limited‐resource conditions. Genetic characterisation and breeding efforts have been scant, thus limiting its use in cattle raising systems. The goal of the present study was to assess the genetic diversity of a collection of P. coloratum var. makarikariense using agro‐morphological traits and molecular markers, in comparison with one accession of var. coloratum and one population of Panicum bergii. Agro‐morphological variability between and within accessions of var. makarikariense in a common garden setting was observed, showing that there is still opportunity for selection. Some accessions performed better than the commercialised material in relation to potential forage production. A total of 117 ISSR bands and 48 SSR alleles allowed the detection of genetic variability between and within accessions. The presence of accession‐specific bands suggested distinctness and limited gene flow. The genetic variability encountered in the commercialised material suggested that it is a stabilised population which has not undergone a strong selection process. Low correlation between agro‐morphologic and molecular variability was observed indicating that both approaches provide complementary information. Both morphological and molecular markers reveal genetic differentiation between varieties and species. This study provides a set of new SSR markers available for diversity assessment and valuable information that can be applied directly in collection management for breeding and conservation programmes.  相似文献   

16.
  • To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
  • We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
  • Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
  • Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
  相似文献   

17.
Seed dispersal studies have primarily examined dispersal as a function of distance from the parent tree and/or heterogeneity in dispersal due to animal use of nesting, roosting and sleeping sites. However, non‐random heterogeneity in seed dispersal is also likely to result from the post‐foraging behavior and movement of frugivores which prefer certain trees. To characterize variation in seed rain at fine scales, we studied the dispersal curve of Prunus ceylanica, a primarily bird‐dispersed species. We compared seed rain at conspecifics, heterospecific fruiting trees with similar frugivore assemblages, emergent trees, and the landscape surrounding these trees. Seed rain of P. ceylanica was found to peak globally under the canopy of conspecifics but to peak locally under the canopy and immediate neighborhood of heterospecific fruiting trees. Our results demonstrate that seed rain is highly clumped even at fine spatial scales. A large proportion of seeds are dispersed in specific, localized regions. This variation can have important implications for plant population dynamics and might significantly alter the impact of post‐dispersal processes. Seed dispersal models may need to incorporate this heterogeneity to explain manifestations of spatially explicit dynamics like mixed species ‘orchards’.  相似文献   

18.
Identifying patterns of larval dispersal within marine metapopulations is vital for effective fisheries management, appropriate marine reserve design, and conservation efforts. We employed genetic markers (microsatellites) to determine dispersal patterns in bicolour damselfish (Pomacentridae: Stegastes partitus). Tissue samples of 751 fish were collected in 2004 and 2005 from 11 sites encompassing the Exuma Sound, Bahamas. Bayesian parentage analysis identified two parent–offspring pairs, which is remarkable given the large population sizes and 28 day pelagic larval duration of bicolour damselfish. The two parent–offspring pairs directly documented self‐recruitment at the two northern‐most sites, one of which is a long‐established marine reserve. Principal coordinates analyses of pair‐wise relatedness values further indicated that self‐recruitment was common in all sampled populations. Nevertheless, measures of genetic differentiation (FST) and results from assignment methods suggested high levels of gene flow among populations. Comparisons of heterozygosity and relatedness among samples of adults and recruits indicated spatially and temporally independent sweepstakes events, whereby only a subset of adults successfully contribute to subsequent generations. These results indicate that self‐recruitment and sweepstakes reproduction are the predominant, ecologically‐relevant processes that shape patterns of larval dispersal in this system.  相似文献   

19.
20.
Amazonian understory antbirds are thought to be relatively sedentary and to have limited dispersal ability; they avoid crossing forest gaps, and even narrow roads through a forest may limit their territories. However, most evidence for sedentariness in antbirds comes from field observations and plot‐based recapture of adult individuals, which do not provide evidence for lack of genetic dispersal, as this often occurs through juveniles. In this study, we used microsatellite markers and mitochondrial control‐region sequences to investigate contemporary and infer historical patterns of genetic diversity and structure of the Rufous‐throated Antbird (Gymnopithys rufigula) within and between two large reserves in central Amazonia. Analyses based on microsatellites suggested two genetically distinct populations and asymmetrical gene flow between them. Within a population, we found a lack of genetic spatial autocorrelation, suggesting that genotypes are randomly distributed and that G. rufigula may disperse longer distances than expected for antbirds. Analyses based on mitochondrial sequences did not recover two clear genetic clusters corresponding to the two reserves and indicated the whole population of the Rufous‐throated Antbird in the region has been expanding over the last 50,000 years. Historical migration rates were low and symmetrical between the two reserves, but we found evidence for a recent unilateral increase in gene flow. Recent differentiation between individuals of the two reserves and a unilateral increase in gene flow suggest that recent urban expansion and habitat loss may be driving changes and threatening populations of Rufous‐throated Antbird in central Amazonia. As ecological traits and behavioral characteristics affect patterns of gene flow, comparative studies of other species with different behavior and ecological requirements will be necessary to better understand patterns of genetic dispersal and effects of urban expansion on Amazonian understory antbirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号