首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为深入探究杜仲雄花氨基酸多样性与营养价值,对193份不同种质雄花的氨基酸含量与组成进行了测定。结果表明:杜仲雄花含有17种氨基酸,总氨基酸平均含量为20.62 g/100 g,天冬氨酸和谷氨酸是主要的2种氨基酸。不同种质杜仲雄花氨基酸含量以蛋氨酸变异系数最大(43.13%),总氨基酸变异系数最小(12.56%)。杜仲雄花蛋白贴近度为0.887。杜仲雄花人体必需氨基酸中仅(Met+Cys)低于FAO/WHO推荐模式的比例,RAA和RC值大都接近于1,SRC值为81.42。杜仲雄花中儿童必需氨基酸含量、味觉氨基酸含量与药用氨基酸含量丰富。不同来源杜仲雄花氨基酸含量差异显著,贵州种质总氨基酸含量(21.32 g/100 g)和必需氨基酸含量(7.50 g/100 g)最高,而不同来源杜仲雄花氨基酸的营养价值差异不显著。聚类分析将193份种质材料分为4个类群,第Ⅱ类群总氨基酸、必需氨基酸、甜味氨基酸和芳香族氨基酸平均含量最高,分别达22.46、7.92、4.10 g/100 g和1.64 g/100 g。杜仲雄花氨基酸具有重要的营养价值,不同种质杜仲雄花氨基酸表现较高的遗传多样性,可为雄花用杜仲良种选育和开发利用提供基础材料。  相似文献   

2.
本文应用日立—835型氨基酸自动分析仪测定了软枣猕猴桃不同部位的氨基酸含量。结果表明:软枣猕猴桃根、叶中均含有16种以上氨基酸,其中有8种人体必需氨基酸;果实中含有14种氨基酸,其中有6种必需氨基酸,精氯酸含量最高,其次为赖氨酸、亮氨酸、丙氨酸和天门冬氨酸。  相似文献   

3.
72份青稞氨基酸组成与营养价值评价   总被引:1,自引:0,他引:1  
为了解青稞氨基酸的组成及营养品质,本研究测定了72份青稞材料籽粒的17种氨基酸(色氨酸除外)含量,通过对供试青稞材料氨基酸含量进行聚类分析,并比较育成品种与地方品种的氨基酸组成差异,对青稞的氨基酸进行了营养价值评价。结果表明,青稞氨基酸总含量平均为87.454 mg/g DW,变幅为47.8~178.7 mg/g DW,其中必需氨基酸含量占37.15%,谷氨酸的含量最高且变异大,蛋氨酸含量最低,赖氨酸含量变异小,91.67%的青稞材料的第一限制性氨基酸为赖氨酸。青稞氨基酸的贴近度为0.903,与世界粮农组织(FAO)、世界卫生组织(WHO)、联合国大学(UNU)提出的模式蛋白质的必需氨基酸组成较接近,氨基酸比值系数分SRC(73.14)较高。非必需氨基酸占青稞总氨基酸含量的62.85%,其中鲜味和甜味氨基酸含量分别为26.58 mg/g DW和21.85 mg/g DW,分别占总氨基酸含量的30.04%和24.43%。不同青稞材料的氨基酸含量和营养价值有很大的差异,地方品种各氨基酸含量均高于育成品种。供试材料中有4份青稞的氨基酸营养价值及风味氨基酸含量均较高。研究结果可为优质氨基酸组成的青稞选育及青稞加工提供指导。  相似文献   

4.
丹参种子脂肪及蛋白质组分分析   总被引:1,自引:1,他引:0  
以陕西商洛丹参GAP基地丹参种子为材料,用气相色谱法分析丹参种子中的脂肪酸组分.用VS-KT-P型自动凯氏定氮仪分析种子蛋白质总含量及蛋白质组分,用121M型氨基酸分析仪测定种子所含氨基酸的种类,以明确丹参种子中脂肪和蛋白质的利用价值.结果表明:丹参种子脂肪中的不饱和脂肪酸含量高达88.1%,其中亚麻酸、哑油酸和油酸等不饱和脂肪酸分别占总油脂的28.84%、37.43%和22.03%,而且,亚麻酸和亚油酸等多不饱和脂肪酸含量(66%)明显高于单不饱和脂肪酸含量(22%),说明其脂肪酸的组成不饱和程度高.丹参种子中蛋白质总含量为14.46%,其中麦谷蛋白含量最高,占蛋白质总量的72.57%,其余依次为清蛋白17.03%、醇溶蛋白6.09%、球蛋白4.31%;丹参种子蛋白质中的必需氨基酸(EAA)占氨基酸总量(TAA)的59.2%,其中赖氨酸的氨基酸比值系数分(SRC)为88.91,其它必需氨基酸SRC接近100.结果说明丹参种子具有一定的营养价值和保健作用.  相似文献   

5.
徐畅  王哲  朱秀蕾  陆秀君  赵丹  齐国辉  郭巍  李瑞军 《昆虫学报》2019,62(10):1205-1211
【目的】分析植物叶片中主要营养成分与暗黑鳃金龟Holotrichia parallela成虫取食偏好关系,明确影响其成虫取食、寿命及生殖力的主要营养成分。【方法】测定室内5种植物(花生、核桃、榆树、金叶女贞和毛白杨)叶片饲养的暗黑鳃金龟成虫寿命、取食量和产卵量,分析植物叶片中4种主要营养成分(氨基酸、脂肪酸、粗纤维和总磷)含量与暗黑鳃金龟成虫取食、寿命和生殖力之间的相关性。【结果】暗黑鳃金龟成虫对5种植物叶片的日均取食量由高到低依次为:花生>核桃>榆树>金叶女贞>毛白杨;取食核桃、花生和榆树叶片的成虫总取食量和单雌总产卵量与取食金叶女贞和毛白杨的成虫间均差异极显著(P<0.01)。成虫总取食量与植物叶片中氨基酸含量显著相关(P<0.05; r=0.515);成虫单雌总产卵量与植物叶片中脂肪酸及氨基酸含量间极显著相关(P<0.01)(分别为:r=0.698和r=0.746)。植物叶片中必需氨基酸含量与成虫取食量和产卵量相关性与植物叶片中总氨基酸含量与成虫取食量和产卵量的相关性基本一致;成虫取食量与植物叶片中赖氨酸含量最相关,而成虫单雌总产卵量与植物叶片中各种必需氨基酸含量均相关。成虫寿命与植物叶片营养成分含量不相关。【结论】植物叶片中的赖氨酸含量是影响暗黑鳃金龟成虫取食偏好的关键因子,植物叶片中必需氨基酸含量和脂肪酸含量影响暗黑鳃金龟生殖力。  相似文献   

6.
为比较不同生境和不同肉色福寿螺的营养成分组成差异以探讨其在综合防治中的潜在利用价值,分析了鱼塘、沟渠和水田3种生境福寿螺以及黑白肉色福寿螺的一般营养成分和氨基酸组成。结果表明:鱼塘福寿螺的水分和粗脂肪含量最高,沟渠福寿螺的灰分含量最高,水田福寿螺的水分、粗脂肪和粗蛋白含量最低,沟渠和鱼塘福寿螺的粗蛋白含量都高于13%,鱼塘福寿螺的总氨基酸、必需氨基酸、呈味氨基酸含量和必须氨基酸指数均最高,但必需氨基酸的比例最低;水田福寿螺的必需氨基酸和呈味氨基酸含量高于沟渠福寿螺,必需氨基酸指数依次是鱼塘>水田>沟渠,白肉福寿螺的总体营养价值较黑肉福寿螺高,福寿螺的总体必需氨基酸组成与鱼粉(CP53.5%)较为接近;在利用中应充分考虑不同生境和不同肉色福寿螺营养组成存在的差异。  相似文献   

7.
采用高效液相色谱(HPLC)和氨基酸比值系数法,对贵州五种野山茶种子氨基酸和主要脂肪酸成分含量进行了研究。结果表明:(1)五种野山茶种子中均含有13种氨基酸,不同种类的氨基酸总量差异极显著,必需氨基酸和非必需氨基酸含量的差异显著(P0.01,P0.05),且第一限制性氨基酸含量不同;长柱红山茶(Camellia longistyla)和贵州红山茶(C.kweichouensis)的氨基酸总量及人体必需氨基酸含量分别为33.01、13.29和26.33、10.38 mg·g~(-1)。(2)不同种类种子的千粒重、含油率、含水率皆呈显著差异(P0.01,P0.05),种子含油率与不饱和脂肪酸含量显著正相关(R=0.556、P0.05),种子不饱和脂肪酸含量与棕榈酸、饱和脂肪酸含量极显著负相关(R=-0.791,P0.01;R=-0.776,P0.01),其中长柱红山茶和贵州红山茶种子的含油率和不饱和脂肪酸含量分别为43.93%、71.89%和43.91%、71.85%。(3)小黄花茶(C.luteoflora)、皱叶瘤果茶(C.rhytidophylla)、贵州红山茶、长柱红山茶、美丽红山茶(C.delicata)所含必需氨基酸与总氨基酸比值分别为44.9、43.3、39.0、40.9、33.8,必需氨基酸与非必需氨基酸比值分别为81.6、76.4、64.0、67.4、51.0,除了美丽红山茶的比值系数偏低外,其余4种均达到了WHO/FAO的理想蛋白质标准,种子蛋白质均具有较高的营养价值,其中长柱红山茶和贵州红山茶的种子含油脂质量等级指标接近我国现行茶油标准(GB11765—2003),可以作为重要的优质油茶种质资源加以开发利用。  相似文献   

8.
木豆种质资源形态与农艺性状的多样性分析   总被引:1,自引:0,他引:1  
为挖掘优异木豆(Cajanus cajan)种质资源,对10份木豆种质资源的10个质量性状和18个数量性状的遗传多样性进行了研究,并对其农艺性状进行了聚类分析。结果表明,质量性状的遗传多样性指数均较大,以鲜荚色(1.9219)的最高,其次是旗瓣点缀色、鲜籽粒颜色和干籽粒底色,多样性指数均为1.4855;再次为干籽粒色斑、干籽粒脐环色和有无种阜,均为0.8813;最小的是小叶叶形、旗瓣底色和株型,均为0.7219。聚类分析可将10份木豆种质资源划分为中茎稀疏型、中茎密生型和粗茎密生型3大类型。这为木豆品种选育提供了科学依据。  相似文献   

9.
选取不同体质量的秦巴山区野生多鳞白甲鱼(Onychostoma macrolepis)20尾,对其肌肉中的常规营养成分、氨基酸和脂肪酸以及微量元素硒的含量进行检测和分析,以期对多鳞白甲鱼的营养价值进行评估。研究结果显示:秦巴山区野生多鳞白甲鱼的粗蛋白和粗脂肪含量分别为17. 37%和1. 76%。谷氨酸含量最高,天冬氨酸和赖氨酸次之,蛋氨酸含量最低,鲜味氨基酸和必需氨基酸分别占氨基酸总量的38. 46%和37. 10%,氨基酸评价指数(EAAI)为77. 00%。野生多鳞白甲鱼二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)的总量为6. 32%,饱和脂肪酸(SFA)和不饱和脂肪酸的比值约为1∶1。肌肉中硒的含量为(0. 058±0. 017)mg/kg。研究结果表明,秦巴山区野生多鳞白甲鱼的营养价值较高,硒含量适中,可以在当地进行进一步产业化开发和推广。  相似文献   

10.
对珠子参茎、叶、花的氨基酸组成与含量进行测定和营养评价分析。结果表明,珠子参茎、叶、花中均含有17种常见氨基酸,氨基酸总量分别为3.73%,14.80%和8.72%;珠子参的茎中必需氨基酸与总氨基酸的比值(E/T)为0.39,必需氨基酸与非必需氨基酸的比值(E/N)为0.64,叶中E/T为0.41,E/N为0.71,花中E/T为0.39,E/N为0.63,氨基酸配比较为合理;珠子参茎、叶、花中蛋氨酸+胱氨酸均为第一限制氨基酸;珠子参茎、叶、花中均含有γ-氨基丁酸,含量分别为0.12%,0.26%和0.16%,叶片中γ-氨基丁酸的含量最高。  相似文献   

11.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

12.
Summary Leaf and bark structure of a birch clone (Betula pendula Roth) continuously exposed to charcoal-filtered air or charcoal-filtered air plus ozone (0.05, 0.075, 0.1 l 1-1) was investigated throughout one growing season. Increasing ozone dose influenced leaf differentiation by reducing leaf area and increasing inner leaf air space, density of cells developing into stomata, scales and hairs. When approximately the same ozone dose had been reached, macroscopical and microscopical symptoms appeared irrespective of the ozone concentration used during treatment. Structural decline began in mesophyll cells around stomatal cavities (droplet-like exudates on the cell walls), continued with disintegration of the cytoplasma and ended in cell collapse. Epidermal cells showed shrinkage of the mucilaginous layer (related to water loss). Their collapse marked the final stage of leaf decline. When subsidiary cells collapsed, guard cells passively opened for a transitory period before collapsing and closing. With increasing ozone dose starch remained accumulated along the small leaf veins and in guard cells. IIK-positive grains were formed in the epidermal cells. This contrasted with the senescent leaves, where starch was entirely retranslocated. Injury symptoms in stem and petiole proceeded from the epidermis to the cambium. Reduced tissue area indicated reduced cambial activity. In plants grown in filtered air and transferred into ozone on 20 August, injury symptoms developed faster than in leaves formed in the presence of ozone. Results are discussed with regard to O3-caused acclimation and injury mechanisms.  相似文献   

13.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

14.
Summary Leaf movement kinetics in five species of Rhododendron were studied in response to leaf temperature, leaf freezing point, and leaf water deficit. There was a gradient in the degree of leaf curling among species in the following order from the greatest curling to the least curling: Rhododendron catawbiense, R. maximum, R. minus, R. macrophyllum, R. ponticum. Those species found to be tolerant of winter conditions had the most intense leaf movements (both curling and angle) while those species with minimal cold tolerance had limited or no leaf movements. Leaf curling occurred at leaf temperatures above the tissue freezing points in all species. Athough leaf angle was influenced by leaf turgor, general tissue desiccation was not the ultimate cause for thermotropic leaf curling in any species tested. Those species with the greatest leaf curling and angle movements had the highest osmotic potential, the lowest water deficit at the turgor loss point, and the lowest symplastic water fraction. These data suggest that there is a trade off in Rhododendron leaf physiology between cold tolerance (due to leaf movements) and water stress tolerance (due to turgor maintenance mechanisms).  相似文献   

15.
Summary Injury caused by low O3 concentrations (0, 0.05, 0.075, 0.1 l 1-1) was analyzed in the epidermis and mesophyll of fully developed birch leaves by gas exchange experiments and low-temperature SEM: (I) after leaf formation in O3-free and ozonated air, and (II) after transferring control plants into ozonated air. In control leaves, autumnal senescence also was studied in O3-free air (III). As O3 concentration increased, leaves of (I) stayed reduced in size, but showed increased specific weight and stomatal density. The declining photosynthetic capacity, quantum yield and carboxylation efficiency lowered the light saturation of CO2 uptake and the water-use efficiency (WUE). Carbon gain was less limited by the reduced stomatal conductance than by the declining ability of CO2 fixation in the mesophyll. The changes in gas exchange were related to the O3 dose and were mediated by narrowed stomatal pores (overriding the increase in stomatal density) and by progressive collapse of mesophyll cells. The air space in the mesophyll increased, preceded by exudate formation on cell walls. Ozonated leaves, which had developed in O3-free air (II), displayed a similar but more rapid decline than the leaves from (I). In senescent leaves (III), CO2 uptake showed a similar decrease as in leaves with O3 injury but no changes in mesophyll structure and WUE. The nitrogen concentration declined only in senescent leaves in parallel with the rate of CO2 uptake. A thorough understanding of O3 injury and natural senescence requires combined structural and functional analyses of leaves.  相似文献   

16.
Gall-forming insects usually have very restricted host ranges, but plant traits affecting patterns of host use have rarely been examined. The sawfly Phyllocolpa sp. (Hymenoptera: Tenthredinidae) forms leaf-roll galls on three of seven Salix (Salicaceae) species that occur together on riverbanks in central Japan. We have attempted to explain this host-use pattern by invoking three plant traits: synchrony of leaf flush with the oviposition period of the sawfly, intrinsic leaf quality as a potential larval food, and leaf morphology. Two Salix species frequently used by the sawfly, Salix eriocarpa and Salix pierotii, had similar leaf traits suitable for larval survival. The third species, Salix serissaefolia, was used relatively less often and the sawfly frequently stopped laying eggs on the plant during oviposition, suggesting ovipositional selection. S. serissaefolia had the smallest leaves, and survival of sawfly larvae was lower on S. serissaefolia than on S. eriocarpa and S. pierotii, because of gall destruction, by other herbivorous insects, and leaf-size restrictions. Among the four unused species, Salix chaenomeloides had a late leaf-flush phenology, Salix gracilistyla had inferior leaf quality, and Salix gilgiana had linear leaves; these seemed to be critical factors for non-use. Salix subfragilis was also unused, but the reason for this could not be explained by the three leaf traits studied.  相似文献   

17.
Summary The removal of fungal spores, urediniospores ofMelampsora medusae and conidia ofPestalozzia sp., from the leaf surfaces ofPopulus xeuramericana (Dode) Guinier cv. I-488 was assessed using three cultural techniques conventionally employed in phylloplane studies. The method of removal and the original density of spore deposition, but not the interaction of these factors, were significant determinants of variability in spore removal. Irrespective of the original density of deposition, the leaf print method was the most, and the leaf washing technique the least, efficient means of spore removal from the leaf surface. Factors which could contribute to this difference in efficiency are discussed.  相似文献   

18.
Growth and productive characteristics of successive leaves were ontogenetically examined using sunflower and zinnia plants grown in the field. For the purpose of more advanced comprehension, ontogenetic behavior of productive characteristics was formulated with the schematic leaf growth model. The largest leaf in zinnia appeared around the middle leaf order, but did not show the highest photosythetic rate. The decreasing pattern of relative leaf area expansion rate did not significantly differ among individual leaves, and seemed inherent to species. The ontogenetic changes in net photosynthetic rate per unit leaf area showed convex curves, while those in dark respiratory rate per unit leaf area rapidly decreased with leaf development and then became constant. In part, the rapid increase of photosynthetic rate in young leaves was supported by enhancement of light utilization efficiency, along with increase of chlorophyll content. The approach of leaf angle to the horizontal was more or less accompanied by photosynthetic development and leaf expansion. It was suggested that photosynthetic maturation in leaves of the sun-leaf type appears at leaf age equivalent to 0.35 to 0.46 of leaf life span. Ontogenetic pattern of all productive characteristics basically differed little among successive leaves.  相似文献   

19.
Busch A  Gleissberg S 《Planta》2003,217(6):841-848
FLORICAULA/ LEAFY-like genes were initially characterized as flower meristem identity genes. In a range of angiosperms, expression occurs also in vegetative shoot apices and developing leaves, and in some species with dissected leaves expression is perpetuated during organogenesis at the leaf marginal blastozone. The evolution of these expression patterns and associated functions is not well understood. We have isolated and characterized a FLORICAULA-like gene from California Poppy, Eschscholzia californica Cham. (Papaveraceae), a species belonging to the basal eudicot clade Ranunculales. EcFLO encodes a putative 416-amino-acid protein with highest similarity to homologous genes from Trochodendron and Platanus. We show that EcFLO mRNA is expressed during the vegetative phase of the shoot apical meristem and in developing dissected leaves in a characteristic manner. This pattern is compared to that of other eudicots and discussed in terms of evolution of FLORICAULA expression and function.  相似文献   

20.
Karban R 《Oecologia》2007,153(1):81-88
Deciduous leaf fall is thought to be an adaptation that allows plants living in seasonal environments to reduce water loss and damage during unfavorable periods while increasing photosynthetic rates during favorable periods. Observations of natural variation in leaf shedding suggest that deciduous leaf fall may also allow plants to reduce herbivory. I tested this hypothesis by experimentally manipulating leaf retention for Quercus lobata and observing natural rates of herbivory. Quercus lobata is primarily deciduous although individuals show considerable natural variation in leaf retention. Oak saplings with no leaves through winter experienced reduced attack by cynipid gall makers the following spring. This pattern was consistent with the positive correlation between natural leaf persistence and gall numbers. These cynipids do not overwinter on the leaves that trees retain through winter, although they appear to use persistent leaves as oviposition cues. If these results are general for woody plants in continental temperate habitats, they suggest that an important and unrecognized consequence of deciduous leaf shedding may be a reduction in herbivore damage, and that this effect should be included in models of deciduous and evergreen behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号