首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meiotic drive, the class of meiotic mechanisms that drive unequal segregation of alleles among gametes, may be an important force in karyotype evolution. Its role in holocentric organisms, whose chromosomes lack localized centromeres, is poorly understood. We crossed two individuals of Carex scoparia (Cyperaceae) with different chromosome numbers (2n = 33II = 66 × 2n = 32II = 64) to obtain F1 individuals, which we then self‐pollinated to obtain second‐generation (F2) crosses. RAD‐seq was performed for 191 individuals (including the parents, five F1 individuals and 184 F2 individuals). Our F2 linkage map based on stringent editing of the RAD‐seq data set yielded 32 linkage groups. In the final map, 865 loci were located on a linkage map of 3966.99 cM (linkage groups ranged from 24.39 to 193.31 cM in length and contained 5–51 loci each). Three linkage groups exhibit more loci under segregation distortion than expected by chance; within linkage groups, loci exhibiting segregation distortion are clustered. This finding implicates meiotic drive in the segregation of chromosome variants, suggesting that selection of chromosome variants in meiosis may contribute to the establishment and fixation of chromosome variants in Carex, which is renowned for high chromosomal and species diversity. This is an important finding as previous studies demonstrate that chromosome divergence may play a key role in differentiation and speciation in Carex.  相似文献   

2.
We have isolated 14 polymorphic greater horseshoe bat, Rhinolophus ferrumequinum microsatellite loci. The number of alleles varied from two to 12 in 58 individuals. These loci will be used to assign paternity in order to characterize patterns of breeding and reproductive success in a wild R. ferrumequinum population. Loci were also tested in 17 other bat species. Twelve loci cross‐amplified in other species and three loci were polymorphic in all eight Rhinolophus species tested.  相似文献   

3.
Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef‐building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (colony 2.0, cervus 3.0, mltr v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean tm = 0.999) in multiple paternity broods (mean rp = 0.119). Self‐fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species.  相似文献   

4.
We isolated and characterized 11 novel microsatellite loci to study paternity in the Australian musk duck (Biziura lobata), using nonradioactive PCR‐based techniques to screen GA and GAAA repeats enriched genomic DNA libraries. Nine of 11 loci showed no evidence of null alleles and were variable (mean HE = 0.825, mean number of alleles = 9). This set of nine loci is suitable for paternity assignment (exclusion probability for nine unlinked loci = 0.9999). We also demonstrated that many of these loci cross‐amplify in various other waterfowl species.  相似文献   

5.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

6.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

7.
Understanding the mating system and reproductive strategies of an endangered species is critical to the success of captive breeding. The big‐headed turtle (Platysternon megacephalum) is one of the most threatened turtle species in the world. Captive breeding and reintroduction are necessary to re‐establish wild populations of P. megacephalum in some of its historical ranges in China, where the original populations have been extirpated. However, the captive breeding of P. megacephalum is very difficult and this may be due to its mysterious reproductive strategies and special behavior (e.g., aggressive temperament and territoriality). In this study, we achieved successful captive breeding of P. megacephalum by creating a habitat that mimics natural conditions and then investigated its mating system using microsatellite makers. A total of 16 clutches containing 79 eggs of P. megacephalum were collected, and 52 were hatched successfully over two breeding seasons. Of the 15 effective clutches, 6 clutches (40%) exhibited multiple paternity. There was no significant correlation between clutch size and multiple paternity, and no significant difference in hatching success between multiple‐sired and single‐sired clutches. However, there was significant correlation between male body size and the number of offspring, with higher‐ranked males contributing to more clutches. Our results provide the first evidence of multiple paternity and male hierarchy in P. megacephalum. These findings suggest that multiple paternity and male hierarchy should be considered in captive breeding programs for P. megacephalum, and creating a habitat that mimics natural conditions is an effctive way to achieve successful captive breeding and investigate the mating systems of this species.  相似文献   

8.
Six microsatellite loci were isolated from the bruchid Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Each locus was polymorphic, with the number of alleles ranging from 3 to 18. We found high levels of within‐population variation at most loci, with heterozygosities ranging from 0 to 0.75. Cross‐species amplification of these loci was tested in two other species of the genus Acanthoscelides, A. obvelatus Bridwell and A. argillaceus Sharp.  相似文献   

9.
There is a great need to develop efficient, noninvasive genetic sampling methods to study wild populations of multiple, co‐occurring, threatened felids. This is especially important for molecular scatology studies occurring in challenging tropical environments where DNA degrades quickly and the quality of faecal samples varies greatly. We optimized 14 polymorphic microsatellite loci for jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopardus pardalis) and assessed their utility for cross‐species amplification. Additionally, we tested their reliability for species and individual identification using DNA from faeces of wild felids detected by a scat detector dog across Belize in Central America. All microsatellite loci were successfully amplified in the three target species, were polymorphic with average expected heterozygosities of HE = 0.60 ± 0.18 (SD) for jaguars, HE = 0.65 ± 0.21 (SD) for pumas and HE = 0.70 ± 0.13 (SD) for ocelots and had an overall PCR amplification success of 61%. We used this nuclear DNA primer set to successfully identify species and individuals from 49% of 1053 field‐collected scat samples. This set of optimized microsatellite multiplexes represents a powerful tool for future efforts to conduct noninvasive studies on multiple, wild Neotropical felids.  相似文献   

10.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   

11.
Loci considered to be under selection are generally avoided in attempts to infer past demographic processes as they do not fit neutral model assumptions. However, opportunities to better reconstruct some aspects of past demography might thus be missed. Here we examined genetic differentiation between two sympatric European oak species with contrasting ecological dynamics (Quercus robur and Quercus petraea) with both outlier (i.e. loci possibly affected by divergent selection between species or by hitchhiking effects with genomic regions under selection) and nonoutlier loci. We sampled 855 individuals in six mixed forests in France and genotyped them with a set of 262 SNPs enriched with markers showing high interspecific differentiation, resulting in accurate species delimitation. We identified between 13 and 74 interspecific outlier loci, depending on the coalescent simulation models and parameters used. Greater genetic diversity was predicted in Q. petraea (a late‐successional species) than in Q. robur (an early successional species) as introgression should theoretically occur predominantly from the resident species to the invading species. Remarkably, this prediction was verified with outlier loci but not with nonoutlier loci. We suggest that the lower effective interspecific gene flow at loci showing high interspecific divergence has better preserved the signal of past asymmetric introgression towards Q. petraea caused by the species' contrasting dynamics. Using markers under selection to reconstruct past demographic processes could therefore have broader potential than generally recognized.  相似文献   

12.
The development of microsatellite loci has become more efficient using next‐generation sequencing (NGS) approaches, and many studies imply that the amount of applicable loci is large. However, few studies have sought to quantify the number of loci that are retained for use out of the thousands of sequence reads initially obtained. We analyzed the success rate of microsatellite loci development for three amphibian species using a 454 NGS approach on tetra‐nucleotide motif‐enriched species‐specific libraries. The number of sequence reads obtained differed strongly between species and ranged from 19,562 for Triturus cristatus to 55,626 for Lissotriton helveticus, with 52,075 reads obtained for Calotriton asper. PHOBOS was used to identify sequences with tetra‐nucleotide repeat motifs with a minimum repeat number of ten and high quality primer binding sites. Of 107 sequences for T. cristatus, 316 for C. asper and 319 for L. helveticus, we tested the amplification success, polymorphism, and degree of heterozygosity for 41 primer combinations each for C. asper and T. cristatus, and 22 for L. helveticus. We found 11 polymorphic loci for T. cristatus, 20 loci for C. asper, and 15 loci for L. helveticus. Extrapolated, the number of potentially amplifiable loci (PALs) resulted in estimated species‐specific success rates of 0.15% (T. cristatus), 0.30% (C. asper), and 0.39% (L. helveticus). Compared with representative Illumina NGS approaches, our applied 454‐sequencing approach on specifically enriched sublibraries proved to be quite competitive in terms of success rates and number of finally applicable loci.  相似文献   

13.
Fine‐scale spatial genetic structure of populations results from social and spatial behaviors of individuals such as sex‐biased dispersal and philopatry. However, the demographic history of a given population can override such socio‐spatial factors in shaping genetic variability when bottlenecks or founder events occurred in the population. Here, we investigated whether socio‐spatial organization determines the fine‐scale genetic structure for both sexes in a Mediterranean mouflon (Ovis gmelini musimon × Ovis sp.) population in southern France 60 years after its introduction. Based on multilocus genotypes at 16 loci of microsatellite DNA (n = 230 individuals), we identified three genetic groups for females and two for males, and concurrently defined the same number of socio‐spatial units using both GPS‐collared individuals (n = 121) and visual resightings of marked individuals (n = 378). The socio‐spatial and genetic structures did not match, indicating that the former was not the main driver of the latter for both sexes. Beyond this structural mismatch, we found significant, yet low, genetic differentiation among female socio‐spatial groups, and no genetic differentiation in males, with this suggesting female philopatry and male‐biased gene flow, respectively. Despite spatial disconnection, females from the north of the study area were genetically closer to females from the south, as indicated by the spatial analysis of the genetic variability, and this pattern was in accordance with the common genetic origin of their founders. To conclude, more than 14 generations later, genetic signatures of first introduction are not only still detectable among females, but they also represent the main factor shaping their present‐time genetic structure.  相似文献   

14.
The genus Satureja is an important plant with a number of aromatic and medicinal properties. In this research, the relative efficiencies of amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL) were used to detect genetic relationships among 14 species of Satureja, growing wild in Iran. Eleven AFLP and 14 SAMPL primer combinations produced 999 and 1142 scorable bands, respectively, all of the fragments of which were found to be polymorphic. The average genetic similarity values based on Jaccard's coefficient were 0.24 and 0.21 for AFLP and SAMPL, respectively, indicating considerable distance and diversity in the studied germplasm. The correlation coefficients were statistically significant between both marker systems (r = 0.89). UPGMA derived from the combined binary data matrices of both markers depicted genetic distinctions among the studied species and clustered them into two main clusters and several groups. S. edmondi showed the maximum distance from other species and was placed into a single main cluster, while the maximum similarity was obtained between S. rechingeri and S. khuzistanica. Our results indicate that both marker systems are suitable for differentiating individuals and species of this genus.  相似文献   

15.
The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater‐resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater‐resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine‐scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater‐resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater‐resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers.  相似文献   

16.
Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade‐off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even‐aged stand, trees of the late‐successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early‐successional species (Q. robur). A large‐scale paternity study and a spatially explicit individual‐based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition–colonization trade‐off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics.  相似文献   

17.
Hybridization among conspecifics in native and introduced habitats has important implications for biological invasions in new ecosystems. Bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are genetically isolated and occur in sympatry within their native range. Following their introduction to North America, however, introgressant hybrids have been reported throughout their expanded range within the Mississippi River Basin (MRB). The extent of introgression, both spatially and generationally, is largely unknown. Therefore, we examined mixed‐species populations from across the MRB to characterize the extent of interspecific gene flow. We assayed 2798 individuals from nine locations with a suite of species‐diagnostic SNPs (57 nuclear and one mitochondrial). Forty‐four per cent (n = 1244) of individuals displayed hybrid genotypes. Moreover, the composition of hybrid genotypes varied among locations and represented complex hybrid swarms with multiple generations of gene flow. Introgressive hybrids were identified from all locations, were bidirectional and followed a bimodal distribution consisting primarily of parental or parental‐like genotypes and phenotypes. All described hybrid categories were present among individuals from 1999 to 2008, with parents and later‐generation backcrosses representing the largest proportion of individuals among years. Our mitochondrial SNP (COII), tested on a subset of 730 individuals, revealed a silver carp maternal bias in 13 of 21 (62%) F1 hybrids, in all silver carp backcrosses, and maintained throughout many of the bighead carp backcrosses. The application of this suite of diagnostic markers and the spatial coverage permits a deeper examination of the complexity in hybrid swarms between two invasive, introduced species.  相似文献   

18.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

19.
Nine polymorphic microsatellite loci from the Madagascar paradise flycatcher Terpsiphone mutata were isolated using nonradioactive polymerase chain reaction (PCR)‐based techniques to screen an enriched genomic library. Seven polymorphic loci showed no evidence of null alleles and exhibited high levels of variation in 18 unrelated individuals (mean diversity = 0.80, mean number of alleles = 13.6). These loci are therefore suitable for analysis of population structure and paternity (exclusion probability for six unlinked loci = 0.9998).  相似文献   

20.
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号