首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yves F. Dufrêne 《Proteomics》2009,9(24):5400-5405
Analysing microbial cell surface proteins is a challenging task in current microbial proteomic research, which has major implications for drug design, vaccine development, and microbial monitoring. In this context, atomic force microscopy (AFM) has recently emerged has a powerful characterization platform, providing valuable insights into the surface proteome of microbial cells. The aim of this article is to show how advanced AFM techniques, that all have in common functionalization of the AFM tip with specific molecules, can be used to answer pertinent questions related to surface‐associated proteins, such as what is their spatial arrangement on the cell surface, and what are the forces driving their interaction with the environment?  相似文献   

2.
Atomic force microscopy (AFM), in conjunction with colloid probe, coated colloid probe and cell probe techniques, has been used to measure directly the adhesive force between a polystyrene sphere (diameter 11 μm), protein bovine serum albumin (BSA) and a yeast cell, and two different membranes. These were polymeric ultrafiltration membranes of similar MWCO (4000 Da) but of different materials (ES 404 and XP 117, PCI Membrane Systems Ltd (UK)). The colloid probe was created by immobilising a polystyrene sphere onto a tipless V‐shaped AFM cantilever. The coated probe was made by adsorbing BSA on a 5 μm silica colloid, while immobilising a single yeast cell on such a tipless cantilever created the cell probe. Measurements were made in 10–2 M NaCl solution. It was found for polystyrene, protein and cell systems that the adhesive force at the ES 404 membrane was greater than that at the XP 117 membrane. The paper shows that the colloid probe, coated colloid probe and cell probe techniques can provide useful means of directly quantifying the adhesion of both inorganic and biological materials to membrane surfaces.  相似文献   

3.
Atomic force microscopy (AFM) has been used to study the micromechanical properties of biological systems. Its unique ability to function both as an imaging device and force sensor with nanometer resolution in both gaseous and liquid environments has meant that AFM has provided unique insights into the mechanical behaviour of tissues, cells and single molecules. As a surface scanning device, AFM can map properties such as adhesion and the Young's modulus of surfaces. As a force sensor and nanoindentor AFM can directly measure properties such as the Young's modulus of surfaces or the binding forces of cells. As a stress-strain gauge AFM can study the stretching of single molecules or fibres and as a nanomanipulator it can dissect biological particles such as viruses or DNA strands. The present paper reviews key research that has demonstrated the versatility of AFM and how it can be exploited to study the micromechanical behaviour of biological materials.  相似文献   

4.
Only a limited number of techniques are available for assessing the effect of different coating materials on cell adherence to screws. In this study, we describe a simple and inexpensive method for evaluation of cell adhesion on irregular surfaces such as the surgical or implant screws. For this purpose, we prepared semi-submerged screws in the petri dishes using agar. Using BSA- or HA-coated screws, we tested whether BSA or HA could improve cell adherence when used as coating materials. Agar-coated screws were used as internal control. Then the “ratio of cell adherence” was calculated by subtracting the reference RCA value obtained from the agar coated screws (internal control). When compared to that of the non-coated screws both the HA- and BSA-coating improved cell adherence on the screws by 2.34 and 2.72 fold respectively. Similarly, MTT assay data revealed that the metabolic capacities of cells on HA- or BSA-coated screws were improved by 2.36 and 2.86 fold respectively. These findings suggest that this protocol can be used for comparing the ability of cells to attach on irregular surfaces such as dental or orthopedic screws and assessing their viability.  相似文献   

5.
《IRBM》2008,29(2-3):77-88
A major turning point in the biomaterials field would be to develop tools that can offer greater insight into cell behaviour on material surfaces. Obtaining this information is very important for the development of long-term implantable materials because it can aid in improving cell adhesion and proliferation properties. The amalgamation of multiple disciplines has already produced many interesting techniques and approaches for the characterisation of cell adhesion processes and force adhesion strength determination on biomaterials. In this review, the authors provide an overview of the recent techniques developed for the noninvasive in situ study of the adhesion process as well as systems that allow the measurement of adhesion force strengths over biomaterials. Techniques based on light internal reflection, electrochemical impedance spectroscopy, and the quartz crystal microbalance (QCM) are discussed for their capabilities in investigating the cell adhesion process. Conversely, techniques such as flow cells, centrifugation, and cytodetachers are presented for the adhesion force measurement. An emphasis on atomic force microscopy (AFM) will demonstrate its ability to probe both the cell adhesion process and cell adhesion force, depending on the approach used. A discussion is followed on the strengths and/or weaknesses of these techniques. Finally, new trends and possible long-term directions for determining both adhesion process and force are highlighted.  相似文献   

6.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

7.
Supported lipid bilayers (SLBs) are widely used as a model for studying membrane properties (phase separation, clustering, dynamics) and its interaction with other compounds, such as drugs or peptides. However SLB characteristics differ depending on the support used. Commonly used techniques for SLB imaging and measurements are single molecule fluorescence microscopy, FCS and atomic force microscopy (AFM). Because most optical imaging studies are carried out on a glass support, while AFM requires an extremely flat surface (generally mica), results from these techniques cannot be compared directly, since the charge and smoothness properties of these materials strongly influence diffusion. Unfortunately, the high level of manual dexterity required for the cutting and gluing thin slices of mica to the glass slide presents a hurdle to routine use of mica for SLB preparation. Although this would be the method of choice, such prepared mica surfaces often end up being uneven (wavy) and difficult to image, especially with small working distance, high numerical aperture lenses. Here we present a simple and reproducible method for preparing thin, flat mica surfaces for lipid vesicle deposition and SLB preparation. Additionally, our custom made chamber requires only very small volumes of vesicles for SLB formation. The overall procedure results in the efficient, simple and inexpensive production of high quality lipid bilayer surfaces that are directly comparable to those used in AFM studies.  相似文献   

8.
To understand the role of physical forces at a cellular level, it is necessary to track mechanical properties during cellular processes. Here we present a protocol that uses flat atomic force microscopy (AFM) cantilevers clamped at constant height, and light microscopy to measure the resistance force, mechanical stress and volume of globular animal cells under compression. We describe the AFM and cantilever setup, live cell culture in the AFM, how to ensure stability of AFM measurements during medium perfusion, integration of optical microscopy to measure parameters such as volume and track intracellular dynamics, and interpretation of the physical parameters measured. Although we use this protocol on trypsinized interphase and mitotic HeLa cells, it can also be applied to other cells with a relatively globular shape, especially animal cells in a low-adhesive environment. After a short setup phase, the protocol can be used to investigate approximately one cell per hour.  相似文献   

9.
Atomic force microscopy (AFM) is a non-invasive microscopy to explore living biological systems like cells in liquid environment. Thus AFM is an appropriate tool to investigate surface chemical modification and its influence on biological systems. In particular, control over biomaterial surface chemistry can result in a regulated cell response. This report investigates the influence of adhesive and non-adhesive surfaces on the cell morphology and the influence of the cytoskeleton structure on the local mechanical properties. In this study, the main work concerns a thorough investigation of the height images obtained with an AFM as therecorded images provide the evolution of the mechanical properties of the cell as function of its local structure. Information on the cell elasticity due to the cytoskeleton organization is deduced when comparing the AFM tip indentation depth versus the distance between the cytoskeleton bundles for the different samples.  相似文献   

10.
Atomic force microscopy (AFM) increasingly has been used to analyse "receptor" function, either by using purified proteins ("molecular recognition microscopy") or, more recently, in situ in living cells. The latter approach has been enabled by the use of a modified commercial AFM, linked to a confocal microscope, which has allowed adhesion forces between ligands and receptors in cells to be measured and mapped, and downstream cellular responses analysed. We review the application of AFM to cell biology and, in particular, to the study of ligand-receptor interactions and draw examples from our own work and that of others to show the utility of AFM, including for the exploration of cell surface functionalities. We also identify shortcomings of AFM in comparison to "standard" methods, such as receptor auto-radiography or immuno-detection, that are widely applied in cell biology and pharmacological analysis.  相似文献   

11.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

12.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.  相似文献   

13.
Atomic force microscopy (AFM) is a specialised form of scanning probe microscopy, which was invented by Binnig and colleagues in 1986. Since then, AFM has been increasingly used to study biomedical problems. Because of its high resolution, AFM has been used to examine the topography or shape of surfaces, such as during the molecular imaging of proteins. This, combined with the ability to operate under known force regimes, makes AFM technology particularly useful for measuring intermolecular bond forces and assessing the mechanical properties of biological materials. Many of the constraints (e.g. complex instrumentation, slow acquisition speeds and poor vertical range) that previously limited the use of AFM in cell biology are now beginning to be resolved. Technological advances will enable AFM to challenge both confocal laser scanning microscopy and scanning electron microscopy as a method for carrying out three-dimensional imaging. Its use as both a precise micro-manipulator and a measurement tool will probably result in many novel and exciting applications in the future. In this article, we have reviewed some of the current biological applications of AFM, and illustrated these applications using studies of the cell biology of bone and integrin-mediated adhesion.  相似文献   

14.
Surface potential is a commonly overlooked physical characteristic that plays a dominant role in the adhesion of microorganisms to substrate surfaces. Kelvin probe force microscopy (KPFM) is a module of atomic force microscopy (AFM) that measures the contact potential difference between surfaces at the nano-scale. The combination of KPFM with AFM allows for the simultaneous generation of surface potential and topographical maps of biological samples such as bacterial cells. Here, we employ KPFM to examine the effects of surface potential on microbial adhesion to medically relevant surfaces such as stainless steel and gold. Surface potential maps revealed differences in surface potential for microbial membranes on different material substrates. A step-height graph was generated to show the difference in surface potential at a boundary area between the substrate surface and microorganisms. Changes in cellular membrane surface potential have been linked with changes in cellular metabolism and motility. Therefore, KPFM represents a powerful tool that can be utilized to examine the changes of microbial membrane surface potential upon adhesion to various substrate surfaces. In this study, we demonstrate the procedure to characterize the surface potential of individual methicillin-resistant Staphylococcus aureus USA100 cells on stainless steel and gold using KPFM.  相似文献   

15.
Image processing techniques are bringing new insights to biomedical research. The automatic recognition and classification of biomedical objects can enhance work efficiency while identifying new inter-relationships among biological features. In this work, a simple rule-based decision tree classifier is developed to classify typical features of mixed cell types investigated by atomic force microscopy (AFM). A combination of continuous wavelet transform (CWT) and moment-based features are extracted from the AFM data to represent that shape information of different cellular objects at multiple resolution levels. The features are shown to be invariant under operations of translation, rotation, and scaling. The features are then used in a simple rule-based classifier to discriminate between anucleate versus nucleate cell types or to distinguish cells from a fibrous environment such as a tissue scaffold or stint. Since each feature has clear physical meaning, the decision rule of this tree classifier is simple, which makes it very suitable for online processing. Experimental results on AFM data confirm that the performance of this classifier is robust and reliable.  相似文献   

16.
ABSTRACT

Atomic force microscopy (AFM) increasingly has been used to analyse “receptor” function, either by using purified proteins (“molecular recognition microscopy”) or, more recently, in situ in living cells. The latter approach has been enabled by the use of a modified commercial AFM, linked to a confocal microscope, which has allowed adhesion forces between ligands and receptors in cells to be measured and mapped, and downstream cellular responses analysed. We review the application of AFM to cell biology and, in particular, to the study of ligand–receptor interactions and draw examples from our own work and that of others to show the utility of AFM, including for the exploration of cell surface functionalities. We also identify shortcomings of AFM in comparison to “standard” methods, such as receptor auto-radiography or immuno-detection, that are widely applied in cell biology and pharmacological analysis.  相似文献   

17.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

18.
Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young’s modulus (Eeff) relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.  相似文献   

19.
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.  相似文献   

20.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号