首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.  相似文献   

2.

Background

Yersinia enterocolitica outer membrane protein A (OmpA) is one of the major outer membrane proteins with high immunogenicity. We performed the polymorphism analysis for the outer membrane protein A and putative outer membrane protein A (p-ompA) family protein gene of 318 Y. enterocolitica strains.

Results

The data showed all the pathogenic strains and biotype 1A strains harboring ystB gene carried both ompA and p-ompA genes; parts of the biotype 1A strains not harboring ystB gene carried either ompA or p-ompA gene. In non-pathogenic strains (biotype 1A), distribution of the two genes and ystB were highly correlated, showing genetic polymorphism. The pathogenic and non-pathogenic, highly and weakly pathogenic strains were divided into different groups based on sequence analysis of two genes. Although the variations of the sequences, the translated proteins and predicted secondary or tertiary structures of OmpA and P-OmpA were similar.

Conclusions

OmpA and p-ompA gene were highly conserved for pathogenic Y. enterocolitica. The distributions of two genes were correlated with ystB for biotype 1A strains. The polymorphism analysis results of the two genes probably due to different bio-serotypes of the strains, and reflected the dissemination of different bio-serotype clones of Y. enterocolitica.  相似文献   

3.
The aim of this study was to collect preliminary data on the carriage of pathogenic Yersinia enterocolitica in slaughtered pigs in France and to test a simplified method for detecting these strains from tonsils. From January to March 2009, 900 tonsil swabs were taken from pigs at one slaughterhouse in Brittany, France. The swabs were vortexed in 10 ml PSB broth, then 1 ml was added to 9 ml ITC broth. The media were incubated for 48 h at 25 °C. The PSB enrichment broth was streaked on CIN plates and the ITC enrichment broth on SSDC plates. In addition to the ISO 10273 method, we also streaked ITC enrichment broth on CIN plates. The plates were incubated for 24 h at 30 °C, and we then streaked a maximum of four typical colonies per plate onto a plate containing chromogenic medium (YeCM), for the isolation of pathogenic Y. enterocolitica isolates. In parallel, biochemical assays were carried out to confirm the identification of the isolates as Yersinia and to determine biotype.After passage on a YeCM plate and biochemical tests, 380 strains were confirmed to be pathogenic Y. enterocolitica. Finally, with the ISO 10273 method, 9.1% (CI95% [5.8-12.4]) of tonsil swabs and 60% (CI95% [45.4-74.6]) of the batches were positive. With the ITC-CIN method, 14.0% (CI95% [10.7-17.3]) of the tonsil swabs and 68.9% (CI95% [54.3-83.5]) of the batches were positive. Identification as pathogenic Y. enterocolitica was confirmed for 97.0% of the typical colonies obtained on the chromogenic medium, YeCM. The most prevalent biotype was biotype 4 (80.5% of the isolates), followed by biotype 3.This study demonstrates that the ITC-CIN method, followed by streaking on YeCM, may be an effective approach to the isolation of pathogenic Y. enterocolitica from tonsil swabs and the recovery of positive samples. This method is less time-consuming than the ISO 10273 method and reduces the number of biochemical tests required for the confirmation of Yersinia identification, through the use of YeCM.  相似文献   

4.
Yersinia enterocolitica and other Yersinia species, such as Y. pseudotuberculosis, Y. bercovieri, and Y. intermedia, were differentiated using Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. A set of well defined Yersinia strains from Switzerland and Germany was used to create a method for FT-IR-based differentiation of Yersinia isolates at the species level. The isolates of Y. enterocolitica were also differentiated by FT-IR into the main biotypes (biotypes 1A, 2, and 4) and serotypes (serotypes O:3, O:5, O:9, and “non-O:3, O:5, and O:9”). For external validation of the constructed methods, independently obtained isolates of different Yersinia species were used. A total of 79.9% of Y. enterocolitica sensu stricto isolates were identified correctly at the species level. The FT-IR analysis allowed the separation of all Y. bercovieri, Y. intermedia, and Y. rohdei strains from Y. enterocolitica, which could not be differentiated by the API 20E test system. The probability for correct biotype identification of Y. enterocolitica isolates was 98.3% (41 externally validated strains). For correct serotype identification, the probability was 92.5% (42 externally validated strains). In addition, the presence or absence of the ail gene, one of the main pathogenicity markers, was demonstrated using FT-IR. The probability for correct identification of isolates concerning the ail gene was 98.5% (51 externally validated strains). This indicates that it is possible to obtain information about genus, species, and in the case of Y. enterocolitica also subspecies type with a single measurement. Furthermore, this is the first example of the identification of specific pathogenicity using FT-IR.The genus Yersinia belongs to the bacterial family Enterobacteriaceae and encompasses three well-known human pathogens: Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. Pathogenic strains of Y. enterocolitica cause yersiniosis, an acute enteric disease. In Germany and Switzerland, strains of Y. enterocolitica belong to the most frequently isolated pathogens connected with bacterial gastroenteritis (27, 31). Y. enterocolitica also causes other clinical syndromes, such as enterocolitis, acute mesenteric lymphadenitis, mimicking appendicitis, postinfectious arthritis, and systemic infections (7, 21). It is assumed that the main contamination source is food of animal origin, especially pork meat or raw milk (8, 21, 27). Therefore, the focus of diagnosis for these bacteria as food-borne pathogens includes the examination of food samples in food inspection and veterinary controls of livestock.The species Y. enterocolitica sensu lato as described by Frederiksen (9) was recently subdivided into several species: Y. enterocolitica sensu stricto, Y. intermedia, Y. frederiksenii, Y. kristensenii, Y. aldovae, Y. mollaretii, Y. rohdei, and Y. bercovieri (20). The identification of Y. enterocolitica sensu stricto by traditional agar plate techniques (ISO standard 10273:2003) is complicated by the fact that on the commonly used selective agar plates, especially the cefsulodin-irgasan-novobiocin (CIN) agar, several unrelated bacteria also grow (1, 20). In addition, some Yersinia strains are inhibited by CIN agar (10). The differentiation of putative Yersinia strains isolated from the CIN agar is additionally impeded because the commonly used commercial identification systems (for example, API 20E or API Rapid 32IDE) do not include all Yersinia strains in their databases and usually misidentify them as Y. enterocolitica (12). Nevertheless, the biochemical test system API 20E is still used as an affordable tool for the identification of Y. enterocolitica. This probably results in a constant misidentification of certain Yersinia species, particularly Y. bercovieri, Y. rohdei, and Y. intermedia, as Y. enterocolitica (1, 12, 15).Y. enterocolitica sensu stricto comprises pathogenic and nonpathogenic members. The species can be grouped into various biotypes by biochemical tests and independently into different serotypes by immunological tests. Both types are connected with different pathogenic potential. The most common biotype-serotype combinations associated with human diseases were biotype 1B/serotype O:8, 2/O:5,27, 2/O:9, 3/O:3, and 4/O:3 (7). Biotype 1A is deemed to be non- or less pathogenic for humans. Biotype 1B is widespread in the United States and only rarely detected in Europe and Japan (11, 14, 26, 28). Based on different DNA-DNA hybridization values and 16S rRNA gene sequences, it was proposed to name the “American” strains Y. enterocolitica subsp. enterocolitica (19). Biotypes 2 and 4 are often isolated from yersiniosis patients, and biotype 3 seems to be pathogenic but rare (6, 21).Pathogenic strains of Y. enterocolitica harbor certain virulence factors, such as the plasmid-encoded yadA gene and the chromosomally encoded ail gene (17, 32). In contrast, apathogenic strains of Y. enterocolitica do not contain these two genes. However, the plasmid harboring the yadA gene can be lost under certain cultivation conditions in the laboratory (4). This may lead to false-negative results in any test system based on the presence of this plasmid. Therefore, the ail gene appears to be the best-suited marker for the detection of pathogenic Y. enterocolitica strains. The product of the ail gene is an adhesion and invasion factor (17). Therefore, the detection of the ail gene by PCR is used as an indication of the presence of pathogenic strains of Y. enterocolitica in selective enrichments or isolated pure cultures (33).Recently, Fourier transform infrared spectroscopy (FT-IR) has been established as a new method for identification of bacteria, yeasts, and other microorganisms (3, 16, 22, 24, 38). This method analyzes the total composition of all components of the cell using infrared spectroscopy (13, 18). The FT-IR method is rapid and reliable and therefore can be easily adapted to routine analysis. Furthermore, there accrue almost no costs for consumables during sample preparation and measurements. The technique offers a wide range of applications for differentiation at the species and subspecies levels. It has already been used for the differentiation of several food-borne pathogens, like Listeria monocytogenes (25), Escherichia coli (13), and Bacillus cereus (23, 29). Recently, promising results were obtained by combination of FT-IR and multivariate methods for data processing, in particular artificial neural networks (ANN) (25, 35).In the present work, FT-IR combined with ANN analysis was applied for classification of Yersinia strains at the species level and of Y. enterocolitica at the subspecies level. Furthermore, differentiation between pathogenic and apathogenic strains of Y. enterocolitica by FT-IR was attempted.  相似文献   

5.
An amplified fragment length polymorphism (AFLP) method, developed to genotype Yersinia enterocolitica, has been used to investigate 70 representative strains isolated from humans, pigs, sheep, and cattle in the United Kingdom. AFLP primarily distinguished Y. enterocolitica strains according to their biotype, with strains dividing into two distinct clusters: cluster A, comprising largely the putatively pathogenic biotypes (BT2 to -4), and cluster B, comprising the putatively nonpathogenic biotype 1A strains and a single BT1B isolate. Within these two clusters, subclusters formed largely on the basis of serotype. However, AFLP profiles also allowed differentiation of strains within these serotype-related subclusters, indicating the high discriminatory power of the technique for Y. enterocolitica. Investigation of the relationship between strain AFLP profile and host confirmed that pigs are, and provides further proof that sheep may be, potential sources of human infection with putatively pathogenic strains. However, the results suggest that some strains causing human disease do not come from veterinary sources identifiable at this time. The distribution of some BT1A isolates within cluster A raises questions about the relationship between virulence potential and biotype.  相似文献   

6.
In the everyday routine of an analytic lab, one is often confronted with the challenge to identify an unknown microbial sample lacking prior information to set the search limits.In the present work, we propose a workflow, which uses the spectral diversity of a commercial database (SARAMIS) to narrow down the search field at a certain taxonomic level, followed by a refined classification by supervised modelling. As supervised learning algorithm, we have chosen a shrinkage discriminant analysis approach, which takes collinearity of the data into account and provides a scoring system for biomarker ranking. This ranking can be used to tailor specific biomarker subsets, which optimize discrimination between subgroups, allowing a weighting of misclassification.The suitability of the approach was verified based on a dataset containing the mass spectra of three Yersinia species Yersinia enterocolitica, Y. pseudotuberculosis and Yersinia pestis. Thereby, we laid the emphasis on the discrimination between the highly related species Yersinia pseudotuberculosis and Y. pestis.All three species were correctly identified at the genus level by the commercial database. Whereas Y. enterocolitica was correctly identified at the species level, discrimination between the highly related Y. pseudotuberculosis and Y. pestis strains was ambiguous. With the use of the supervised modelling approach, we were able to accurately discriminate all the species even when grown under different culture conditions.  相似文献   

7.
Aims: The chromosomal ail gene (attachment and invasion locus) is commonly used as target gene for the detection of pathogenic Y. enterocolitica strains in food testing. The ail PCR does not detect strains of biotype 1A (BT1A), which are regarded as non‐pathogenic because BT1A strains lack the virulence plasmid and chromosomally encoded virulence genes. In some recent reports, however, BT1A strains were discovered that harboured the ail gene. We isolated an ail‐positive strain and characterized this strain with phenotypic and genotypic methods to study its possible relation to pathogenic Y. enterocolitica strains. Methods and Results: The ail region of the BT1A strain was sequenced and compared with the corresponding region of nonpathogenic BT1A strains and pathogenic strains. Pulsed field gel electrophoresis (PFGE) analysis was applied revealing no similarity of the PFGE pattern of this strain to the patterns of pathogenic strains. Virulence‐gene‐based PCR analyses showed the strain to be positive for ystB, but negative for virulence genes ystA, virF and yadA. Whole‐cell MALDI‐TOF MS combined with a shrinkage discriminant analysis approach was applied and clearly classified the ail‐positive biotype 1A strain within the cluster of BT1A strains. Conclusions: PCR detection of ail sequences in food matrices should be followed by the isolation of the responsible strain and its characterization using phenotypic or genotypic methods. Significance and Impact of the Study: The ail gene may be present in Y. enterocolitica BT1A strains, which are commonly considered as nonpathogenic. Efficient methods such as PCR typing of other virulence genes or rapid MALDI‐TOF MS‐based bacterial profiling allow a more comprehensive assessment of the pathogenicity potential of Yersinia strains.  相似文献   

8.
The origins of human contamination withYersinia enterocolitica are still unknown. We have investigated the major components of a terrestrial ecosystem (soil, earthworms, field voles, shrews, crops, hares, rabbits, and birds) for the presence ofYersinia. Four hundred fifty-nine strains ofYersinia were isolated. We report the first isolations of typicalY. enterocolitica belonging to classical or new biotypes and ofY. enterocolitica-like organisms (sucrose negative; rhamnose positive; melibiose and rhamnose positive) from soil samples, earthworms, crops, and birds. Sucrose-negativeY. enterocolitica strains and biotypes 1, 2, and 3, usually associated with human nonmesenteric syndromes, are predominant in soil, which can be considered as a reservoir for these biotypes.Y. enterocolitica serogroups O∶3 and O∶9, strains of which are responsible in Europe for human mesenteric syndromes, were not found in this study. The epidemiology ofY. enterocolitica infections is discussed.  相似文献   

9.
The sucrose-negative strains ofYersinia enterocolitica biotype 3 serotype 03 phage type 2 were isolated from cecal contents and oral cavity swabs of slaughtered pigs and from a swab of a skinner at the slaughterhouse. These organisms differed fromY. kristensenii, determined by assaying the antibiotic susceptibilities to ampicillin, carbenicillin, and cephalothin. These organisms showed positive reactions in the presence of 44 Md plasmid, a calcium dependency, autoagglutination activity, and produced diarrhea in mice and a negative reaction for pyrazinamidase activity. Plasmid digestion with restriction endonucleases isolated from this organism showed the same patterns in biotypes 3 and 4 serotype 03. Therefore, the sucrose-negative strains ofY. enterocolitica biotype 3 serotype 03 are apparently pathogenic.  相似文献   

10.
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.  相似文献   

11.
PCR-based assays were developed for the detection of plasmid- and chromosome-borne virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis, to investigate the distribution of these genes in isolates from various sources. The results of PCR genotyping, based on 5 virulence-associated genes of 140 strains of Y. enterocolitica, were compared to phenotypic tests, such as biotyping and serotyping, and to virulence plasmid-associated properties such as calcium-dependent growth at 37°C and Congo red uptake. The specificity of the PCR results was validated by hybridization. Genotyping data correlated well with biotype data, and most biotypes resulted in (nearly) homogeneous genotypes for the chromosomal virulence genes (ystA, ystB, and ail); however, plasmid-borne genes (yadA and virF) were detected with variable efficiency, due to heterogeneity within the bacterial population for the presence of the virulence plasmid. Of the virulence genes, only ystB was present in biotype 1A; however, within this biotype, pathogenic and apathogenic isolates could not be distinguished based on the detection of virulence genes. Forty Y. pseudotuberculosis isolates were tested by PCR for the presence of inv, yadA, and lcrF. All isolates were inv positive, and 88% of the isolates contained the virulence plasmid genes yadA and lcrF. In conclusion, this study shows that genotyping of Yersinia spp., based on both chromosome- and plasmid-borne virulence genes, is feasible and informative and can provide a rapid and reliable genotypic characterization of field isolates.  相似文献   

12.

Background  

Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species.  相似文献   

13.
14.
During spring and autumn migrations, 468 fecal samples from 57 different species of migratory birds were collected in Sweden. In total, Yersinia spp. were isolated from 12.8% of collected samples. The most commonly found species was Yersinia enterocolitica, which was isolated from 5.6% of all collected samples, followed by Y. intermedia (3.8%), Y. frederiksenii (3.0%), Y. kristensenii (0.9%), Y. pseudotuberculosis (0.6%), and Y. rohdei (0.4%). The pathogenic, virF-positive Y. pseudotuberculosis strains were recovered from three thrushes. These strains belonged to the same bioserotype, 1/O:2, but had two different profiles as determined by pulsed-field gel electrophoresis with NotI and SpeI enzymes. In addition, 10 Y. enterocolitica strains, all from barnacle geese, belonged to bioserotype 3/O:3, which is associated with human disease. Two of the strains were pathogenic, carrying the virF gene on their plasmids. All pathogenic Y. pseudotuberculosis and Y. enterocolitica strains were recovered during the spring, and as the birds were caught during active migration they likely became infected at an earlier stage of the migration, thus potentially transporting these bacterial pathogens over long geographical distances.  相似文献   

15.
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4–6 base cutters). Yersinia species have 6–7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences—carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0552-6) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

New DNA sequencing technologies have enabled detailed comparative genomic analyses of entire genera of bacterial pathogens. Prior to this study, three species of the enterobacterial genus Yersinia that cause invasive human diseases (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) had been sequenced. However, there were no genomic data on the Yersinia species with more limited virulence potential, frequently found in soil and water environments.

Results

We used high-throughput sequencing-by-synthesis instruments to obtain 25- to 42-fold average redundancy, whole-genome shotgun data from the type strains of eight species: Y. aldovae, Y. bercovieri, Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. mollaretii, Y. rohdei, and Y. ruckeri. The deepest branching species in the genus, Y. ruckeri, causative agent of red mouth disease in fish, has the smallest genome (3.7 Mb), although it shares the same core set of approximately 2,500 genes as the other members of the species, whose genomes range in size from 4.3 to 4.8 Mb. Yersinia genomes had a similar global partition of protein functions, as measured by the distribution of Cluster of Orthologous Groups families. Genome to genome variation in islands with genes encoding functions such as ureases, hydrogeneases and B-12 cofactor metabolite reactions may reflect adaptations to colonizing specific host habitats.

Conclusions

Rapid high-quality draft sequencing was used successfully to compare pathogenic and non-pathogenic members of the Yersinia genus. This work underscores the importance of the acquisition of horizontally transferred genes in the evolution of Y. pestis and points to virulence determinants that have been gained and lost on multiple occasions in the history of the genus.  相似文献   

17.
In this study, an incidence pattern of 1.7% for Yersinia enterocolitica and 2.5% for Y. intermedia were observed in an analysis of 120 diversified food samples collected from the local market of Mysore, Southern India. Two native isolates characterized as Y. enterocolitica belonged to biotype 1B and revealed the presence of major virulence related traits such as regulator of virulence, mucoid Yersinia factor regulator, attachment invasion locus, heat stable enterotoxin, Yersinia type II secretory system and phospholipase A in PCR. Force type neighbor-joining phylograms generated for Y. enterocolitica based on PCR amplicons of rovA and ypl showed 100% homology with two to three strains of Y. enterocolitica and about 75% homology with several strains of Y. pestis.  相似文献   

18.
Thirty samples of raw milk, originating from individual producers in the Turin area, were examined for the presence ofYersinia enterocolitica. A cold enrichment method with phosphate-buffered saline (PBS) 1/15M, pH 7.6, and sorbitol-bile-salts broth (SB) was used. After 7, 14, or 21 days at 4°–5°C, plating was performed on selective agar media directly (MacConkey agar andSalmonella-Shigella agar) after the alkali method was used. Six strains ofY. enterocolitica (biotype 1) and 32 strainsY. enterocolitica-like (threeY. fredericksenii; nineYersinia rhamnose-, melibiose+, -methyl-d-glucoside+, raffinose+, probablyYersinia intermedia biotype rhamnose-; and 20Y. intermedia) were isolated.Yersinia strains were found in 11 samples of raw milk, andY. enterocolitica in four samples.  相似文献   

19.
The speciesYersinia enterocolitica is definedsensu stricto on the bases of biochemical and other phenotypic characteristics. Biochemically,Y. enterocolitica contains five major biotypes: 1 through 4 of Niléhn and of Wauters, and the trehalose-negative, metabolically inactive, socalled hare strains in biotype 5 of Niléhn and of Wauters, and biochemically atypical strains, including urease-negative, Simmons' citrate-positive, and lactose-and raffinose-positive strains.Y. enterocolitica sensu stricto was distinguishable from the newly described speciesYersinia kristensenii by sucrose and Voges-Proskauer reactions (negative inY. kristensenii). These species were previously separated by DNA relatedness.Y. enterocolitica was also separable biochemically and by DNA relatedness from the two newly proposed rhamnose-positive species,Yersinia intermedia andYersinia frederiksenii. Strain 161(=CIP 80-27=ATCC 9610) is proposed as the neotype forY. enterocolitica.  相似文献   

20.
In this report we describe the development and evaluation of a fluorogenic PCR assay for the detection of pathogenic Yersinia enterocolitica. The assay targets the chromosomally encoded attachment and invasion gene, ail. Three primer-probe sets (TM1, TM2, and TM3) amplifying different, yet overlapping, regions of ail were examined for their specificity and sensitivity. All three primer-probe sets were able to detect between 0.25 and 0.5 pg of purified Y. enterocolitica DNA. TM1 identified all 26 Y. enterocolitica strains examined. TM3 was able to detect all strains except one, whereas TM2 was unable to detect 10 of the Y. enterocolitica strains tested. None of the primer-probe sets cross-reacted with any of the 21 non-Y. enterocolitica strains examined. When the TM1 set was utilized, the fluorogenic PCR assay was able to detect ≤4 Y. enterocolitica CFU/ml in pure culture and 10 Y. enterocolitica CFU/ml independent of the presence of 108 CFU of contaminating bacteria per ml. This set was also capable of detecting ≤1 CFU of Y. enterocolitica per g of ground pork or feces after a 24-h enrichment in a Yersinia selective broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号