首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic pyrophosphatase (PPase) is a conserved and essential enzyme catalyzing the hydrolysis of pyrophosphate PPi. Its activity is required to promote a lot of thermodynamically unfavorable reactions including biosynthesis of activated precursors of sugars and amino acids. Several protein partners of PPase were found so far in Escherichia coli by large-scale approaches. Functional role of these interactions was not studied. In this paper we report the identification of three protein partners of E. coli PPase not found earlier. Pull-down assay on the Ni2+-chelating column using 6His-tagged PPase as bait was used to isolate PPase complexes from stationary-phase cells. Of several isolated protein components, five were identified by MALDI-TOF mass-spectrometry: two chaperones (DnaK and GroEL) and three enzymes of carbohydrate and amino acid metabolism (FbaB, fructose-1,6-bisphosphate aldolase, class I; GadA, l-glutamate decarboxylase; and KduI, 5-keto-4-deoxyuronate isomerase). These three proteins were cloned, expressed and purified in 6His-tagged and/or tag-free forms. Their binary interactions with PPase were verified by independent approaches. Initial characterization of the complexes indicates that PPase may stabilize its protein partners against unfolding or degradation. Comparative analysis of the PPase protein partners allowed an insight into its possible involvement in the cell metabolic regulation.  相似文献   

2.

Background

Low inorganic phosphate (Pi) availability triggers metabolic responses to maintain the intracellular phosphate homeostasis in plants. One crucial adaptive mechanism is the immediate cleavage of Pi from phosphorylated substrates; however, phosphohydrolases that function in the cytosol and putative substrates have not been characterized yet. One candidate gene is Arabidopsis thaliana At1g73010 encoding an uncharacterized enzyme with homology to the haloacid dehalogenase (HAD) superfamily.

Methods and results

This work reports the molecular cloning of At1g73010, its expression in Escherichia coli, and the enzymatic characterisation of the recombinant protein (33.5 kD). The Mg2+-dependent enzyme named AtPPsPase1 catalyzes the specific cleavage of pyrophosphate (Km 38.8 μM) with an alkaline catalytic pH optimum. Gel filtration revealed a tetrameric structure of the soluble cytoplasmic protein. Modelling of the active site and assay of the recombinant protein variant D19A demonstrated that the enzyme shares the catalytic mechanism of the HAD superfamily including a phosphorylated enzyme intermediate.

Conclusions

The tight control of AtPPsPase1 gene expression underlines its important role in the Pi starvation response and suggests that cleavage of pyrophosphate is an immediate metabolic adaptation reaction.

General significance

The novel enzyme, the first pyrophosphatase in the HAD superfamily, differs from classical pyrophosphatases with respect to structure and catalytic mechanism. The enzyme function could be used to discover unknown aspects of pyrophosphate metabolism in general.  相似文献   

3.
The three-dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 Å resolution using Patterson's search technique and refined to an R-factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (α3)2 into α3′α3″. The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re-arrangements for pyrophosphatase function is discussed.  相似文献   

4.
A cytochemical investigation has been made of nucleotide pyrophosphatase activity in dry and germinated seeds of Triticum, and its distribution compared to that of general acid phosphatase reactions seen with naphthol AS-BI phosphate and p-nitrophenylphosphate as substrates. Acid phosphatase activity was present in the cytoplasm and in channels through the walls of the aleurone cells in both dry and germinated seeds. The cytoplasmic activity was even more marked with nucleotide pyrophosphatase which was almost entirely absent from the cell walls. Nucleotide pyrophosphatase was active in all endosperm cells but particularly in some cells adjacent to the aleurone layer. In addition, all cells of the scutellum and embryo were positive for nucleotide pyrophosphatase activity, especially the developing fibres and xylem elements of leaves and coleoptiles, mature leaf xylem and phloem elements, scutellar provascular and vascular tissues and the epidermis of dark grown coleoptiles.Abbreviation GA3 gibberellic acid  相似文献   

5.
Cardiotoxin II of the Indian cobra(Naja naja) contains approximately four Mg2+ per mol. Complete demetallation of the toxin is achieved by three cycles of treatment with ethylenediamine tetraacetate and gel filtration. Reconstitution of toxin by treatment of the apo-protein with Mg2+ restores metal content and inorganic pyrophosphatase activity only to the extent of two atoms/mol and 65%, respectively. Use of Mg (II)-EDTA in the reconstitution experiment yields restoration of half the original enzyme activity. Mg2+ is required for the inorganic pyrophosphatase action of the toxin. A definitive statement on the non-essentiality of Mg2+ for the lethal toxicity of the toxin is not possible at present, although experimental observations indicate that demetallated toxin is as toxic as the native toxin. Based on this and the differing sensitivities of the enzyme and toxic activities of the toxin to heat, it is suggested that the reaction centres in the toxin for the two activities are different and that the pyrophosphatase activity is not causally connected with the lethal toxicity of the toxin  相似文献   

6.
The activities of potato nucleotide pyrophosphatase and cyclic nucleotide phosphodiesterase against a common substrate, p-nitrophenyl thymidine 5-phosphate and its histochemical analogue, AS-BI-naphthyl thymidine 5-phosphate, were determined with the aid of relatively specific inhibitors, NAD and 2,3-cAMP, respectively. These inhibitors were utilized to reexamine wheat (Triticum aestivum L. cv. Mironovska 808) seeds and 3–5-d old shoots for the occurrence and histochemical localization of nucleotide pyrophosphatase, and to establish the localization of cyclic nucleotide phosphodiesterase. Nucleotide pyrophosphatase is a cytoplasmic enzyme found to be particularly active in the coleoptile epidermis and hypodermis, leaf mesophyll, as well as in developing fibres and phloem. Cyclic nucleotide phosphodiesterase is also a cytoplasmic enzyme active in the shoot vascular bundles, particularly the xylem, and in the seed. Within the seed it is highly active in the crushed cell layer adjacent to the scutellum and in endosperm cells adjacent to the aleurone layer. Within the embryo, cyclic nucleotide phosphodiesterase is most active in epithelial cells adjacent to the crushed cell layer, the suspensor, radicle and root-cap, as well as in the pro-vascular tissues of the scutellum.  相似文献   

7.
Purple photosynthetic bacteria synthesize the acyclic carotenoids spheroidene and spirilloxanthin which are ketolated to spheroidenone and 2,2′-diketospirilloxanthin under aerobic growth. For the studies of the catalytic reaction of the ketolating enzyme, the crtA genes from Rubrivivax gelatinosus and Rhodobacter capsulatus encoding acyclic carotenoid 2-ketolases were expressed in Escherichia coli to functional enzymes. With the purified enzyme from the latter, the requirement of molecular oxygen and reduced ferredoxin for the catalytic activity was determined. Furthermore, the putative intermediate 2-HO-spheroidene was in vitro converted to the corresponding 2-keto product. Therefore, a monooxygenase mechanism involving two consecutive hydroxylation steps at C-2 were proposed for this enzyme. By functional pathway complementation studies in E. coli and enzyme kinetic studies, the product specificity of both enzymes were investigated. It appears that the ketolases could catalyze most intermediates and products of the spheroidene and spirilloxanthin pathway. This was also the case for the enzyme from Rba. capsulatus from which spirilloxanthin synthesis is absent. In general, the ketolase of Rvi. gelatinosus had a better specificity for spheroidene, HO-spheroidene and spirilloxanthin as substrates than the ketolase from Rba. capsulatus.  相似文献   

8.
McCaul T.F. and Bird R.G. 1978. Localisation of thiamine pyrophosphatase within the cytoplasmic fine structure of trophozoites of Entamoeba histolytica and E. invadens. International Journal for Parasitology8: 501–506. The distribution of thiamine pyrophosphatase (TPPase) activity was studied in both formaldehyde and glutaraldehyde fixed trophozoites of Entamoeba histolytica and E. invadens. The activity was localised within certain vacuoles. No dense deposits for TPPase activity were seen in the small vesicles, elongated smooth-walled lacunae equated with endoplasmic reticulum, or the nucleus. The demonstration of small vesicles surrounding the larger vacuoles indicated that the Golgi-like vacuoles might be involved in the production of cell coat materials and primary lysosomes.  相似文献   

9.
The interaction of inorganic pyrophosphatase from E. coli with inorganic phosphate (P i) was studied in a wide concentration range of phosphate. The apoenzyme gives two inactive compounds with P i, a product of phosphorylation of the carboxylic group of the active site and a stable complex, which can be detected in the presence of the substrate. The phosphorylation occurs when P i is added on a millimole concentration scale, and micromole concentrations are sufficient for the formation of the complex. The formation of the phosphorylated enzyme was confirmed by its sensitivity to hydroxylamine and a change in the properties of the inactive enzyme upon its incubation in alkaline medium. The phosphorylation of pyrophosphatase and the formation of the inactive complex occur upon interaction of inorganic phosphate with different subsites of the enzyme active sites, which are connected by cooperative interactions.  相似文献   

10.
An alkaline inorganic pyrophosphatase (IP) from leaves of an orchid, Aranda Christine 130 (Arachnis hookerana var. luteola × Vanda Hilo Blue) was purified by acetone precipitation and chromatography on Sephadex G-75 and DEAE-cellulose. The IP gave a single band on non-denaturing gel electrophoresis at pH 8.3 and its M, determined by gel filtration, was 28 000. The pH optimum was 9 and the IP required Mg2+ for its activity and stability. The IP exhibited high specificity for PPi and attained a maximum activity at a Mg2+: PPi ratio of 10:1. Other cations tested could not replace Mg2+ and they were also found to be inhibitory. The IP was also inhibited by EDTA and F? but not by iodoacetamide.  相似文献   

11.
Chao TC  Huang H  Tsai JY  Huang CY  Sun YJ 《Proteins》2006,65(3):670-680
Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate (PPi) to orthophosphate (Pi) and controls the level of PPi in cells. PPase plays an essential role in energy conservation and provides the energy for many biosynthetic pathways. The Helicobacter pylori pyrophosphatase (HpPPase) gene was cloned, expressed, purified, and found to have a molecular weight of 20 kDa. The K(m) and V (max) of HpPPase were determined as 214.4 microM and 594 micromol Pi min(-1) mg(-1), respectively. PPi binds Mg(2+) to form a true substrate that activates the enzyme. However, free PPi could be a potent inhibitor for HpPPase. The effects of the inhibitors NaF, ATP, iminodiphosphate, and N-ethylmaleimide on HpPPase activity were evaluated. NaF showed the highest inhibition of the enzyme. Crystal structures of HpPPase and the PPi-HpPPase complex were determined. HpPPase comprises three alpha-helices and nine beta-strands and folds as a barrel structure. HpPPase forms a hexamer in both the solution and crystal states, and each monomer has its own PPi-binding site. The PPi binding does not cause a significant conformational change in the PPi-HpPPase complex, which might represent an inhibition state for HpPPase in the absence of a divalent metal ion.  相似文献   

12.
An inorganic pyrophosphatase has been purified to apparent homogeniety from Indian cobra(Naja naja) venom, with a ten-fold increase in specific activity. The enzyme activity is intrinsic to a protein fraction in the venom which is normally termed cardiotoxin, cobramine, cytotoxin and so on. The enzyme shows a lowK m (70 μI) and high heat stability. The enzyme was active against sodium pyrophosphate; it also hydrolyses a few mononucletides and sugar phosphates at much lower rates. The physiological significance of inorganic pyrophosphatase in venom is discussed.  相似文献   

13.
Free ADP-ribose is a putative second messenger and also a potentially toxic compound due to its non-enzymic reactivity towards protein side chains. ADP-ribose hydrolysis is catalysed by NDP-sugar/alcohol pyrophosphatases of differing specificity, including a highly specific, low-Km ADP-ribose pyrophosphatase. In humans, a submicromolar-Km ADP-ribose pyrophosphatase has been purified from placenta, while recombinant NUDT9 has been described as a similarly specific enzyme with a nudix motif, but with a 102–103 higher Km. Here, a comparative study of both proteins is presented showing that they are in fact enzymically indistinguishable; crucially, they both have submicromolar Km for ADP-ribose. This study firmly supports the view that the ADP-ribose pyrophosphatase present in human tissues is a product of the NUDT9 gene. In addition, this study reveals previously unknown properties of both enzyme forms. They display the same, differential properties in the presence of Mg2+ or Mn2+ as activating cations with respect to substrate specificity, ADP-ribose saturation kinetics, and inhibition by fluoride. Treatment with H2O2 alters the Mg2+/Mn2+ responses and increases the Km values for ADP-ribose, changes that are reversed by DTT. The results are discussed in relation to the proposed roles for ADP-ribose in oxidative/nitrosative stress and for ADP-ribose pyrophosphatase as a protective enzyme whose function is to limit the intracellular accumulation of ADP-ribose.  相似文献   

14.
Nucleotide pyrophosphatase from yeast was inhibited by thiols, o-phenanthroline, 8-hydroxyquinoline, EDTA, and 8-hydroxyquinoline-5-sulfonic acid. The inhibition by chelating agents was time and concentration dependent. Inhibition by EDTA was decreased by complexing the EDTA with metal ions before addition to the enzyme. The effectiveness of the metal ions in preventing inhibition by EDTA paralleled the stability constants of the EDTA-metal complexes. Partial recovery of EDTA-inhibited enzyme activity was achieved with Zn2+, Co2+, Fe2+, and Mn2+. Analyses for zinc in the purified enzyme by atomic absorption spectroscopy and by titration with 8-hydroxyquinoline-5-sulfonic acid revealed the presence of approximately 1 g atom/mol of enzyme (Mr 65,000). The data indicate that yeast nucleotide pyrophosphatase is a metalloenzyme in which the zinc plays some role in activity.  相似文献   

15.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

16.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the following order: hexamer–trimer–dimer–monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   

17.
Earlier work from our laboratory has indicated that a hemerythrin-like protein was over-produced together with the particulate methane monooxygenase (pMMO) when Methylococcus capsulatus (Bath) was grown under high copper concentrations. A homologue of hemerythrin had not previously been found in any prokaryote. To confirm its identity as a hemerythrin, we have isolated and purified this protein by ion-exchange, gel-filtration and hydrophobic interaction chromatography, and characterized it by mass spectrometry, UV-visible, CD, EPR and resonance Raman spectroscopy. On the basis of biophysical and multiple sequence alignment analysis, the protein isolated from M. capsulatus (Bath) is in accord with hemerythrins previously reported from higher organisms. Determination of the Fe content in conjunction with molecular-weight estimation and mass analysis indicates that the native hemerythrin in M. capsulatus (Bath) is a monomer with molecular mass 14.8 kDa, in contrast to hemerythrins from other eukaryotic organisms, where they typically exist as a tetramer or higher oligomers.  相似文献   

18.
Analysis of genome sequence data from the methanogenic archaeon Methanosarcina mazei Gö1 revealed the existence of two open reading frames encoding proton-translocating pyrophosphatases (PPases). These open reading frames are linked by a 750-bp intergenic region containing TC-rich stretches and are transcribed in opposite directions. The corresponding polypeptides are referred to as Mvp1 and Mvp2 and consist of 671 and 676 amino acids, respectively. Both enzymes represent extremely hydrophobic, integral membrane proteins with 15 predicted transmembrane segments and an overall amino acid sequence similarity of 50.1%. Multiple sequence alignments revealed that Mvp1 is closely related to eukaryotic PPases, whereas Mvp2 shows highest homologies to bacterial PPases. Northern blot experiments with RNA from methanol-grown cells harvested in the mid-log growth phase indicated that only Mvp2 was produced under these conditions. Analysis of washed membranes showed that Mvp2 had a specific activity of 0.34 U mg (protein)–1. Proton translocation experiments with inverted membrane vesicles prepared from methanol-grown cells showed that hydrolysis of 1 mol of pyrophosphate was coupled to the translocation of about 1 mol of protons across the cytoplasmic membrane. Appropriate conditions for mvp1 expression could not be determined yet. The pyrophosphatases of M. mazei Gö1 represent the first examples of this enzyme class in methanogenic archaea and may be part of their energy-conserving system. Abbreviations: DCCD, N,N′-dicyclohexylcarbodiimide; PPase, inorganic pyrophosphatase; PPi, inorganic pyrophosphate; Δp, proton motive force.  相似文献   

19.
20.
The TON_0002 gene, which is in close proximity to the DNA polymerase locus in Thermococcus onnurineus NA1, has been shown to encode an inorganic pyrophosphatase. Its genomic position and function suggest a role for pyrophosphate hydrolysis during DNA polymerization. This is the first report of an inorganic pyrophosphatase belonging to the haloacid dehalogenase superfamily, in which unique residues in motif I and II have been replaced with Trp and Gly, respectively. The optimum pyrophosphatase activity of the recombinant enzyme occurred at pH 6, and it displayed an absolute dependence on divalent metal ions, among which Ni2+ was the most efficient. The site-specific mutation of the Gly residue in motif II to Ala or Ser residue exhibited only a slight change in the enzymatic activity and the K m value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号